PROJECTS

VOLUME

More than 90 fully tested and ready-to-use electronics circuits

JANUARY 2000

CONSTRUCTION PROJECTS

1) MICROPROCESSOR-CONTROLLED TRANSISTOR LEAD IDENTIFIER ---1

CIRCUIT IDEAS
2) MULTIPURPOSE CIRCUIT FOR TELEPHONES --13
3) SIMPLE CODE LOCK ---13
4) AUTOMATIC BATHROOM LIGHT---14
5) SMART FLUID LEVEL INDICATOR --15
6) AUTOMATIC SCHOOL BELL SYSTEM ---16
7) DESIGNING AN RF PROBE --18

FEBRUARY 2000
CONSTRUCTION PROJECTS

1) PC BASED SPEED MONITORING SYSTEM ---19

CIRCUIT IDEAS

2) PROTECTION FOR YOUR ELECTRICAL APPLIANCES ---19
3) DIGITAL WATER LEVEL METER ---30
4) UNIVERSAL HIGH-RESISTANCE VOLTMETER ---31
5) TRIAC/TRANSISTOR CHECKER ---32
6) A NOVEL METHOD OF FREQUENCY VARIATION USING 555 ---33

MARCH 2000
CONSTRUCTION PROJECTS

1) RESONANCE TYPE L-C METER ---34
2) ELECTROLYSIS-PROOF COMPLETE WATER-LEVEL SOLUTION --38

CIRCUIT IDEAS

4) LASER CONTROLLED ON/OFF SWITCH --45

6) SIMPLE AND ECONOMIC SINGLE- PHASING PREVENTOR --46

APRIL 2000

CONSTRUCTION PROJECTS

CIRCUIT IDEAS

3) TELEPHONE CALL METER USING CALCULATOR AND COB ---19

MAY 2000

CONSTRUCTION PROJECTS

1) DIGITAL NUMBER SHOOTING GAME 63
2) PC INTERFACED AUDIO PLAYBACK DEVICE: M-PLAYER 66
CIRCUIT IDEAS
3) STEPPER MOTOR DRIVER 73
4) ELECTRONIC DIGITAL TACHOMETER 74
5) LIGHT-OPERATED LIGHT SWITCH 75
6) PRECISION DIGITAL AC POWER CONTROLLER 76
7) LUGGAGE SECURITY SYSTEM 77
JUNE 2000
CONSTRUCTION PROJECTS
8) PORTABLE OZONE GENERATOR 78
9) CONFERENCE TIMER 84
CIRCUIT IDEAS
10) ADD-ON STEREO CHANNEL SELECTOR 87
11) WATER TEMPERATURE CONTROLLER 88
12) EMERGENCY LIGHT 89
13) PARALLEL TELEPHONES WITH SECRECY 90
14) TWO-DOOR DOORBELL 91
15) POWERFUL PEST REPELLER 91
JULY 2000
CONSTRUCTION PROJECTS
16) BUILD YOUR OWN C-BAND SATELLITE TV-RECEIVER 92
17) EPROM-BASED PROGRAMMABLE NUMBER LOCK 99
CIRCUIT IDEAS
18) POWER-SUPPLY FAILURE ALARM 102
19) STOPWATCH USING COB AND CALCULATOR 102
20) DIAL A VOLTAGE 103
21) ELECTRONIC DANCING PEACOCK 104
22) INVERTER OVERLOAD PROTECTOR WITH DELAYED AUTO RESET 105
23) TELEPHONE LINE BASED AUDIO MUTING AND LIGHT-ON CIRCUIT 106
AUGUST 2000
CONSTRUCTION PROJECTS
24) DISPLAY SCHEMES FOR INDIAN LANGUAGES—PART I (Hardware and Software) 108
25) $8085 \mu \mathrm{P}$-KIT BASED SIMPLE IC TESTER 115
CIRCUIT IDEAS
26) LOW COST PCO BILLING METER 119
27) AUTOMATIC MUTING CIRCUIT FOR AUDIO SYSTEMS 120
28) 2-LINE INTERCOM-CUM-TELEPHONE LINE CHANGEOVER CIRCUIT 120
29) GUARD FOR REFRIGERATORS AND AIR-CONDITIONERS 121
30) RADIO BAND POSITION DISPLAY 122

SEPTEMBER 2000

CONSTRUCTION PROJECTS

1) DISPLAY SCHEMES FOR INDIAN LANGUAGES—PART II (Hardware and Software) 123
2) DIGITAL CODE LOCK 133
CIRCUIT IDEAS
3) BINARY TO DOTMATRIX DISPLAY DECODER/DRIVER 137
4) AUTOMATIC SPEED-CONTROLLER FOR FANS AND COOLERS 139
5) BLOWN FUSE INDICATOR 140
6) OVER-/UNDER-VOLTAGE CUT-OFF WITH ON-TIME DELAY 140
7) ONE BUTTON FOR STEP, RUN, AND HALT COMMANDS 142
OCTOBER 2000
CONSTRUCTION PROJECTS
8) MOSFET-BASED 50 Hz SINEWAVE UPS-CUM-EPS 143
9) R-2R D/A CONVERTER-BASED FUNCTION GENERATOR USING PIC16C84 MICROCONTROLLER 150
CIRCUIT IDEAS
10) SIMPLE SWITCH MODE POWER SUPPLY 155
11) TOILET INDICATOR 155
12) FEATHER-TOUCH SWITCHES FOR MAINS 156
13) DIGITAL FAN REGULATOR 157
14) TELEPHONE RINGER USING TIMER ICS 159
NOVEMBER 2000
CONSTRUCTION PROJECTS
15) PC-TO-PC COMMUNICATION USING INFRARED/LASER BEAM 160
16) MULTI-EFFECT CHASER LIGHTS USING 8051 MICROCONTROLLER 166
CIRCUIT IDEAS
17) AUTOMATIC BATTERY CHARGER 170
18) TEMPERATURE MEASUREMENT INSTRUMENT 171
19) VOICE BELL 172
20) MOVING CURTAIN DISPLAY 173
21) PROXIMITY DETECTOR 174
DECEMBER 2000
CONSTRUCTION PROJECTS
22) ELECTRONIC BELL SYSTEM 175
23) SIMPLE TELEPHONE RECORDING/ANSWERING MACHINE 179
CIRCUIT IDEAS
24) MULTICHANNEL CONTROL USING SOFT SWITCHES 183
25) AN EXCLUSIVE SINEWAVE GENERATOR 184
26) TTL THREE-STATE LOGIC PROBE 185
27) AM DSB TRANSMITTER FOR HAMS 185
28) GROUND CONDUCTIVITY MEASUREMENT 186
29) STEPPER MOTOR CONTROL VIA PARALLEL PORT 187

January

MICBOPROCESSOR-CONTROLIED TRANSISTOR LEAD IDENTIFIER

ARUP KUMAR SEN

Transistor lead identification is crucial in designing and servicing. A circuit designer or a serviceman must be fully conversant with the types of transistors used in a circuit. Erroneous lead identification may lead to malfunctions, and, in extreme cases, even destruction of the circuit being designed or serviced.

Though transistor manufacturers encapsulate their products in different package outlines for identification, it is impossible to memorise the outlines of innumerable transistors manufactured by the industry. Although a number of manuals are published, which provide pin details, they may not always be accessible. Besides, it is not always easy to find out the details of a desired transistor by going through the voluminous manuals. But, a handy gadget, called transistor lead identifier, makes the job easy. All one has to do is place the transistor in the gadget's socket to instantly get the desired information on its display, irrespective of the type and package-outline of the device under test.

A manually controlled version of the present project had been published inJ une '84 issue of efy. The present model is totally microprocessor controlled, and hence all manually controlled steps are replaced by software commands. A special circuit, shown in Fig. 1, which acts as an interface to an 8085-based microprocessor kit, has been developed for the purpose.

Principle

Base and type identification. When a semiconductor junction is forward-biased, conventional current flows from the source into the p-layer and comes out of the junction through the n-layer. By applying proper logic voltages, the base-emitter (B E) or base-collector ($B-C$) junction of a bipolar transistor may be forward-biased. As a result, if the device is of npn type,
current enters only through the base. But, in case of a pnp device, current flows through the collector as well as the emitter leads.

During testing, when leads of the 'transistor under test' are connected to terminals 1, 2, and 3 of the test socket (see Fig.1), each of the leads (collector, base, and emitter) comes in series with one of the current directions indicating leds (D2, D4, and D6) as shown in Fig. 1. Whenever the current flows toward a particular junction through a particular lead, the led connected (in proper direction) to that lead glows up. So, in case of an npndevice, only the led connected to the base lead glows. However, in case of a pnpdevice, the other two leds are lit. Now, if
generated with Table I, a microprocessor can easily indicate the type (npn or pnp) and the base of the device under test, with respect to the test socket terminals marked as 1,2 , and 3 . The logic numbers, comprising logic $1(+5 \mathrm{~V})$ and logic 0 (0 V), applied to generate the baseld, are three bit numbers-100, 010, and 001. These numbers are applied sequentially to the leads through the testing socket.

Collector identification. When the base-emitter junction of a transistor is for-ward-biased and its base-collector junction is reverse-biased, conventional current flows in the collector-emitter/emitter-collector path (referred to as c-e path in subsequent text), the magnitude of which depends upon the magnitude of the base current and the beta (current amplification factor in common-emitter configuration) of the transistor. Now, if the transistor is biased as above, but with the collector and emitter leads interchanged, a current of much reduced strength would still flow in the c-e path. So, by comparing these two currents, the collector lead can be easily identified. In practice, we can apply proper binary numbers (as in case of the baseidentification step mentioned earlier) tothe'device under test' to bias the junctions sequentially, in both of the aforesaid condi-

		TABLE I				
Orientation	Test socket terminal 3	Test socket terminal 2	Test socket terminal 1	Base-Id for npn	Base-Id for pnp	Collector-Id for pnp and npn
1	C	B	E	02	05	004
2	C	E	B	01	06	04
3	E	C	B	01	06	02
4	E	B	C	02	05	01
5	B	E	C	04	03	01
6	B	C	E	04	03	02
B=Base C=Collector E=Emitter Note: All bits of higher nibble are set to zero.						

a glowing led corresponds to binary 1, an LeD that is off would correspond to binary 0 . Thus, depending upon the orientation of the transistor leads in the test socket, we would get one of the six hexadecimal numbers (taking led connected to terminal 1 as Lsb), if we consider all higher bits of the byte to be zero. The hexadecimal numbers thus generated for an npn and pnp transistor for all possible orientations (six) are shown under columns 5 and 6 of Table I. Column 5 reflects the BCD weight of в (base) position while column 6 represents 7's complement of the column 5 number.

We may call this 8-bit hexadecimal number base identification number or, in short, baseld. Comparing the base-Id,

tions. As a result, the leds connectedtothecol lector and emitter leads start flickering alternately with different brightness. By inserting a resistor in series with the base, the led glowing with lower brightness can be extinguished.

In the case of an nps device (under normal biasing condition), conventional current flows from source to the collector layer. Hence, the Led connected to the collector only would flicker brighter, if a proper resistor is inserted in series with the base. On the other hand, in case of a pnp device (under normal biasing condition), current flows from source to the emitter layer. So, only the Led connected to the emitter lead would glow brighter. As the type of device is already known by the base Id logic, the collector lead can be easily identified. Thus, for a particular baseld, position of the collector would be indicated by one of the two numbers (we may call it collectorId) as shown in column 7 of Table I.

Error processing. During collector identification for a pnp- or an npn-device, if the junction voltage drop is low (viz, for germanium transistors), one of the two currents in the c-e path (explained above) cannot be reduced adequately and hence, the data may contain two logic-1s. On the other hand, if the device beta is too low (viz, for power transistors), no appreciable current flows in the C-E path, and so the data may not contain any logic-1. In both the cases, lead configuration cannot be established. The remedy is to adjust the value of the resistor in series with the base. There are three resistors (10k, 47k, and 100k) to choose from. These resistors are connected in series with the testing terminals 1,2 , and 3 re spectively. The user has to rotate the transistor, orienting

Fig. 2: Effective biasing of PNP transistors using set 1 binary numbers

Fig. 3: Effective biasing of NPN transistors using set 2 binary numbers
nected to inputs of IC3 (7486, quad 2input Ex-or gate). Gates of ic3 are so wired that they function as controlled ex-or gates. The outputs of IC3 are controlled by the logic level at pin 12. Thus, we obtain two sets of outputs (marked $\bar{Q} \overline{0}$, $\overline{Q_{1}}$, and $\overline{Q^{2}}$) from ic3 as given in Tables III (for pin 12 at logic 1) and IV (for pin 12 at logic 0) respectively.

One of these two sets would be chosen for the output by the software, by controlling the logical state of
the base in different terminals $(1,2$, or 3$)$ on the socket, until the desired results are obtained. To alert the user about this action, a message 'Adjust led' blinks on the display (refer error processing routine in the software program).

The circuit

The binary number generator. In this section, IC1 (an ne555 timer) is used as a clock pulse generator, oscillating at about 45 Hz . The output of Ic1 is applied to clock pin 14 of ic2 (4017-decade counter). As a result, the counter advances sequentially from decimal 0 to 3, raising outputs Q0, Q1, and Q2 to logic-1 level. On reaching the next count, pin 7 (output q3) goes high and it resets the counter. So, the three outputs (Q0, Q1, and Q2) jointly produce three binary numbers, continuously, in a sequential manner (seeTableII).

Qo through Q2 outputs of IC2 are con-
pin 12 . Set- 1 is used to identify the base and type (npn or pnp) of the 'transistor under test,' whereas set-2 is exclusively used for identification of the collector lead, if the device is of npn type.

The interface The three data output lines, carrying the stated binary numbers (coming from pins 3,6 , and 8 of сс3), are connected separately to three bi-directional analogue switches sw1, sw2, and sw3 inside IC5 (CD4066). The other sides of the switches are connected to the terminals of the test socket through some other components shown in Fig. 1. The control line of IC3 (pin 12) is connected to the analogue switch sw4 via pin 3 of IC5. The other side of Sw4 (pin 4) is grounded. If switch sw4 is closed by the software, set-1 binary numbers are applied to the device under test, and when it is open, set-2 binary numbers are applied.

To clearly understand the functioning of the circuit, let us assume that the
'transistor under test' is inserted with its collector in slot-3, the base in slot-2, and the emitter in slot-1 of the testing socket.

Initially, during identification of the base and type of the device, all the analogue switches, except sw4, are closed by the software, applying set-1 binary numbers to the device. Now, if the device is of pnp type, each time the binary number 100 is generated at the output of Ic3, the bc junction is forward-biased, and hence, a conventional current flows through the junction as follows:
$\overline{\mathrm{Q} 2}($ logic 1$) \rightarrow \mathrm{SW} 3 \rightarrow \mathrm{R9} \rightarrow$ internal Led of $\mathrm{I} \subset 4 \rightarrow$ slot $3 \rightarrow$ collector lead \rightarrow св junction \rightarrow base lead \rightarrow slot-2 \rightarrow D3 \rightarrow pin 10 of ${ }_{1 C 5} \rightarrow$ sw $\rightarrow \overline{01}$ (logic 0).

Similarly, when the binary number 001 is generated, another current would flow through the ве junction and the internal Led of IC7. The number 010 has no effect, as in this case both the bc and be junctions become reversed biased.

From the above discussion it is apparent that in the present situation, as the internal LEDS of ic4 and that of IC7 are forward-biased, they would go on producing pulsating optical signals, which would be converted into electrical voltages by the respective internal photo-transistors. The amplified pulsating DC voltages are available across their emitter resistors R7 and R17 respectively. The emitter followers configured around transistors T 1 and T3 raise the power level of the optocoupler's output, while capacitors C3 and C5 minimise the ripple levels in the outputs of emitter followers.

During initial isation, 8155 is configured with port A as an input and ports B and C as output by sending control word $0 E(\mathrm{H})$ to its control register.

Taking output of transistor T1 as MSB(D2), and that of $\mathrm{T3}$ as LSB(DO), the data that is formed during the base identification, is 101 (binary). The microprocessor under the software control, receives this data through port A of 8155 PPI (port number 81). Since all the bits of the higher nibble are masked by the software, the data become $00000101=05(\mathrm{H})$. This data is stored at location 216 A in memory and termed in the software as baseld.

Now, if the device is of npn type, the only binary number that would be effective is 010 . Under the influence of this number both BC and be junctions would be forward-biased simultaneously, and hence conventional current would flow in the following two paths:

Fig. 4: Schematic circuit of special display system

$1 \overline{\mathrm{Q} 1}$ (logic 1) $\rightarrow \mathrm{SW} 2 \rightarrow$ R14 \rightarrow internal LED (IC6) \rightarrow slot-2 \rightarrow base lead \rightarrow BC junction \rightarrow collector lead \rightarrow slot $-3 \rightarrow$ D1 \rightarrow SW3 $\rightarrow \overline{\mathrm{Q} 2}$ (logic 0)
$2 \overline{\text { Q1 }}$ (logic 1) \rightarrow SW2 \rightarrow R14 \rightarrow internal LED (IC6) \rightarrow slot- $2 \rightarrow$ base lead \rightarrow BE junction \rightarrow emitter lead \rightarrow slot $1 \rightarrow \mathrm{D} 5 \rightarrow \mathrm{SW} 1 \rightarrow \overline{\mathrm{Q} 0}$ (logic 0)

Thus, only the internal LED of IC6 would start flickering, and the data that would be formed at the emitters of the transistors is also 010. Accordingly, the base-ld that would be developed in this case is $00000010=2(\mathrm{H})$.

Since, under the same orientation of the transistor in the socket, the base-Ids are different for a pnp and an npn device, the software can decode the type of the device.

In a similar way we can justify the production of the other base-lds, when their collector, base, and emitter are inserted in the testing socket differently.

Once the base-ld is determined, the software sends the same number for a pnp-device (here $=05(\mathrm{H})$) through port c (port number 83), with the bit format shown in Table V.

As a result, the control input of sw2 (pin 12 of IC5) gets logic 0 . So the switch opens to insert resistor R5 in series with the base circuit. This action is necessary to identify the emitter (and hence the collector) lead as described earlier under 'Principle' sub-heading.

On the contrary, since an npn-de-

Fig. 5: Flowcharts for the main program and various subroutines

Fig. 5 (iv)

TABLE VI							
PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
0	0	0	0	1	1	0	1

vice uses the set-2 binary numbers for identification of the collector (hence the emitter), the same number (base-Id) obtained during base identification cannot be sent through port c, if the device under test is of npn type. The base-ld found must be ex-ored first with of (н). Since the base-ld found here is $02(\mathrm{H})$, the data to be sent through port c in this case would be as shown in Table VI.

Note that PC3 becomes logic-1, which would dose switch sw4 to get the set-2 binary numbers.

Once resistor R5 is inserted in the base circuit, and set-1 binary numbers are applied to the device (pnp type), it would be biased sequentially in three distinct ways, of which only two would be effective. The same are shown in Fig. 2.

In case of binary number 100 , the current through the internal LED of IC4 would distinctly be very low compared to the current flowing during number 001, through the internal LED of IC7. If R5 is of sufficiently high value, the former current may be reduced to such an extent that the related led would be off. Hence, the data that would beformed at the emit-
ters of transistors т1-т3 would be 001 . It would be modified by the software to $00000001=01(\mathrm{H})$. This is termed in the software as emitter-Id and is stored at memory location 216B.

On the other hand, if the device is of npn type, set-2 binary numbers are to be applied to it, and the transistor would be biased as shown in Fig. 3. Here, only the internal LED of IC4 would flicker. So, the data at the output would be $100=04(\mathrm{H})$. This is termed in the software as collector-Id, and is stored in memory lo-

Fig. 5 (v)
cation 216c. (In case of pnpdevice, the collector-Id is determined mathematically by subtracting the BaseId from the emitter-Id.)

So the result could be summarised as:
pnp type:
Base-Id $=05(\mathrm{H})$, Collector-Id $=01(\mathrm{H})$.
npn type:
Base-Id $=02(\mathrm{H})$, Collector-Id $=01(\mathrm{H})$.

With this result, the software would point to configuration CBE in the data table, and print the same on the display. By a similar analysis, lead configuration for any other orientation of the device in the test socket would be displayed by the software, after finding the related baseand collector-Id.

Fig. 6: Actual-size, single-sided PCB layout for the circuit in Fig. 1

Fig. 7: Component layout for the PCB

The Display. The display procedure described in this article is based on ic 8279 (programmable keyboard/display interface) which is used in the microprocessor kit. The unique feature of the 8279based display system is that, it can run on its own. You just have to dump the data to be displayed on its internal ram, and your duty is over. 8279 extracts this data from its ram and goes on displaying the same without taking any help or consuming the time of the microprocessor in the kit.

Unfortunately, not all the microprocessor kits present in the market are fitted with this ic. Instead, some of them use a soft-scan method for display purpose. Hence, the stated procedure cannot be run in those kits. Of course, if the monitor program of the kit is to be used, which may have an in-built display routine to display the content of four spe cific memory locations-all at a time, the same may be used in place of the present
display procedure.
Note: Display subroutine at address 20Fc used at EFY, making use of the monitor program of the Vinytics 8085 kit, during program testing, is listed towards the end of the software program given by the author. To make use of the author's display subroutine, please change the code against 'call dISPLAY' instruction (code CDFC 20) everywhere in the program to code CD 4021 for 8279 based display or code CD 0721 for alternate di splay referred in the next paragraph.

Alternatively, one can construct a special display system using four octal Dtype latches (74373) and four seven-segment led displays (LT543). Only one latch and one display has been shown in the schematic circuit of Fig. 4 along with its interface lines from $8155 \propto 8255$ of the kit. To drive this display, a special softscan method explained in the following para has to be used.

The soft scan display procedure

PARTS LIST	
Semiconductors:	
IC1	- NE555, timer
IC3	- CD4017, decade counter-de coder
IC3	- 7486, quad EX-OR gates
IC4,IC6,IC7	- MCT2E, optocoupler
IC5	- CD4066, quad bilateral switch
IC8	- LM7805, 3-terminal +5V regulator
T1,T2,T3	- BC147, npn transistor
D1,D3,D5	- 1N34, point contact diode
D2,D4,D6	- LED, 5mm
D7,D8	- 1N4002, rectifier diode
Resistors (All $1 / 4$ watt $+-5 \%$ metal/ carbon film unless stated otherwise)	
R1,R9,R10,R14,	
R15,R19,R20	- 1 kilo-ohm
	- 33 kilo-ohm
	- 47 kilo-ohm
R4,R11,R16,R21	- 10 kilo-ohm
R3,R6,R7,R12,R17	- 100 kilo-ohm
R8,R13,R18	- 680 ohm
Capacitors:	
C1	- 0.5uF polyster
C2	- 0.14F polyster
C3-C5	- 220山F/12V electrolytic
C6	- $0.22 \mu \mathrm{~F}$ polyster
C7	- $1000 \mu \mathrm{~F} / 12 \mathrm{~V}$ electrolytic
Miscellaneous:	
X1	- 230V/9V-0-9V, 250mA power transformer

The procedure extracts the first data to be displayed from memory. The start memory address of the data to be displayed is to be supplied by the calling program. This data (8-bit) is output from port в of $8155 / 8255$ PPI (after proper coding for driving the seven-segment displays), used in the kit. Data lines are connected in parallel to all the octal latches. But only one of the four latches is enabled (via a specific data bit of port c of 8155/ 8255) to receive the data and transfer the same to its output to drive the corresponding seven-segment led display. To enable a particular latch, a logic 1 is sent through a particular bit of port c (bit 4 here, for the first data) by the software. Subsequently, logic 0 is sent through that bit to latch the data transferred. The program then jumps to seek the second data from memory, and sends the same through port в as before. However, in this case logic 1 is sent through bit 3 of port c, to latch the data to the second sevensegment led display, and so on.

Register в of 8085 is used as a counter, and is initially stored with the binary number $00001000(08 \mathrm{H})$. Each time a data is latched, the logic 1 is shifted right by one place. So, after the fourth data is latched, the reg. в content would be 00000001 . Shift-

;Collector identification program for PNP transistors				
203D	216A21	P2:	LXI H,216AH	Points of Baseld in data table
2040	7E		MOV A,M	Extracts the number to the accumulator
2041	D383		OUT 83H	Send the number to the interface
2043	216021		LXI H,2160H	Points to message 'PnP' in data table
2046	CDFC20		CALL DISPLAY	Displays the message
2049	CD3320		CALL DELAY	Waits for few moments
204C	CD3320		CALL DELAY	Waits for few moments
204F	CD3320		CALL DELAY	Waits for few moments
2052	AF		XRA A	Clears the accumulator
2053	DB81		IN 81H	Seeks data from the interface
2055	E607		ANI 07H	Masks all bits except bits 0,1 and 2
2057	EAA021		JPE ERR	If the data contains even no. of 1 s jumps to error processing routine
205A	326B21		STA 216BH	Stores the data (Emitter-Id) in memory
205D	47		MOV B,A	Moves the Emitter-Id. to B register
205E	3A6A21		LDA 216AH	Extracts Baseld from memory
2061	90		SUB B	Subtracts Emitter-Id from Baseld
2062	326C21		STA 216CH	Stores the result(Collector-Id)in mem.
2065	C39220		JMP P4	J umps to select lead configuration

;Collector identification program for NPN transistors						
2068	216A21	P3:	LXI H,216AH	Points to Baseld in data table	206B	7E
:---	:---					
206C	FE07					

Address	Op Code	Label	Mnemonic	Comments
2087	E607		ANI 07H	Checks only first three bits
2089	EAA021		JPE ERR	If 2 bits are at logic-1 jumps to 21A0
208C	326C21		STA 216CH	Store the No. (Collector-Id)into mem.
208F	C39220		J MP P4	J umps to select lead configuration
;Lead configuration selection program				
2092	216A21	P4:	LXI H,216AH	Extracts Baseld from memory location
2095	7 E		MOV A,M	216A to the accumulator
2096	FE05		CPI 05H	If the number is 05 ,
2098	CABA2O		J Z P4A	jumps to subroutine 4A
209B	FE06		CPI 06H	If the number is 06,
209D	CAD020		J Z P4B	jumps to the subroutine 4B
20A0	FE03		CPI 03H	If the number is 03,
20A2	CAE620		J ZP4C	jumps to the subroutine 4C
20A5	FE02		CPI 02H	If the number is 02 ,
20A7	CABA20		J Z P4A	jumps to the subroutine 4A
20AA	FE01		CPI 01H	If the number is 06,
20AC	CAD020		J Z P4B	jumps to the subroutine 4B
20AF	FE04		CPI 04H	If the number is 04 ,
20B1	CAE620		J Z P4C	jumps to the subroutine 4C
20B4	CDFC20	M:	CALL DISPLAY	J umps to display the lead configuration selected in P4A or P4B or P4C
20B7	C30020		J MP MAIN	J umps back to start
;Lead configuration selection (Base Id. $=05$ or 02)				
20BA	216C21	P4A:	LXI H,216CH	Extracts Collector-Id from memory location
20BD	7E		MOV A,M	216 C to the accumulator
20BE	FE01		CPI 01H	If it is $=01$, jumps to 20CA
20CO	CACA20		JZE	If it is $=04$, points to lead configuration "EbC"
2003	217521		LXI H,2175H	in data table
20 C 6	C3B420		J MP M	J umps to display the lead configuration pointed
$20 \mathrm{C9}$	00		NOP	NOP
20CA	217121	E:	LXI H,2171H	Points to lead config."CbE" and jumps
20CD	C3B420		JMP M	display the configuration
;Lead configuration selection (Base Id. $=06$ or 01)				
20D0	216C21	P4B:	LXI H,216CH	Extracts Collector-Id from memory location
20D3	7E		MOV A,M	216 C to the accumulator
20D4	FE02		CPI 02H	If it is STE02, jumps to 20E0
20D6	CAE020		JZBI	If it is $=04$, points to lead
20D9	217D21		LXI H,217DH	configuration "bEC" in data table
20DC	C3B420		J MP M	J umps to display the lead configuration pointed
20DF	00		NOP	No oPeration
20E0	217921	B:	LXI H,2179H	Points to lead configuration "bCE"
20E3	C3B420		J MP M	and jumps display the configuration
;Lead configuration selection (Base Id. $=03$ or 04)				
20E6	216C21	P4C:	LXI H,216CH	Extracts Collector-Id from memory location
20E9	7E		MOV A,M	216C to the accumulator
20EA	FE01		CPI 01H	If it is $=01$, jumps to 20 F 6
20EC	CAF620		JZC	If it is $=02$, points to lead
20EF	218121		LXI H,2181H	configuration "ECb" in data table
20F2	C3B420		J MP M	J umps to display the lead
20F5	00		NOP	configuration pointed; no operation
20F6	218521	C:	LXI H,2185H	Points to lead configuration "CEb"
20F9	C3B420		J MP M	and jumps to display the configuration
;Display routine using 8279 of the kit (if present)				
2140	OE04		MVI C,03	Sets the counter to count 4 characters
2142	3E90		MVI A,90	Sets cont. 8279 to auto-incr. mode
2144	320160		STA 6001	Address of 8279 cont. reg. $=6001$
2147	7E		MOV A,M	Moves 1st data character from mem. Loc. pointed to by calling instruction.
2148	2 F		CMA	Inverts data (refer note below)
2149	320060		STA,6000	Stores data in 8279 data reg. (a addr $=6000$)
214C	OD		DCR C	Decrements counter
214D	CA5421		JZ2154	Returns to calling program if count=0
2150	23		INXH	Increments memory pointer
2151	C34721		J MP2147	J umps to get next character from memory
2154	C9		RET	Returns to the calling program

Note: In the mirroprocessor kit used, data is inverted before feeding the 7 -seg display.
;Alternative Display Subroutine to be used with interface circuit of Fig. 4

2107	0608	MVI B,08H	Store 0000 1000 in reg.B
2109	3 EOO	MVI A,00H	Out 00H through Port C to latch data in all

		TABLE VII		
	; Modification to Collector	Identification Program for pnp Transistors		
Address	Op Code	Label	Mnemonic	Comments
$203 D$	216021	P2:	LXI H,2160H	Points to message 'PnP'in data table
2040	CDFC20		CALL DISPLAY	Displays the message
2043	$216 A 21$		LXI H,216AH	Points to Baseld in data table
2046	$7 E$	MOV A,M	Extract the number to the accumulator	
2047	D383		OUT 83H	Send number via port C to interface

TABLE VIII ; Modification to Collector Identification Program for npn Transistors				
Address	Op Code	Label	Mnemonic	Comments
2068	216421	P3:	LXI H,2164H	Points to the message ' nPn '
206B	CDFC20		CALL DISPLAY	Displays the same on display.
206E	216A21		LXI H,216AH	Points to Baseld in DATA table
2071	7 E		MOV A,M	Extract the number to the accumulator
2072	FE07		CPI 07H	Refer note. 1 (see original program.)
2074	CAB621		JZER	J umps to error processing routine
2077	EEOF		XRI OFH	Refer note. 2 (see original program.)
2079	D383		OUT 83H	Send number to interface (via port C)

ing operation is done after first moving the data from the register to the accumulator, and then storing the result back into the register once again if the zero flag is not set by the RAR operation.

Now, with the reg. в content $=0000$ 0001, one more shifting of the bits towards right would make the accumulator content $=$ 0000 0000, which would set the zero flag. And hence the program would jump
back to the calling one. It would be interesting to note the same reg. в content (a binary number comprising a logic 1) is sent through port c to enable the particular latch.

Since the base Id numbers and the code to enable a specific latch are sent through the same port (port c) in the alternate display, the base Id must be sent first for displaying the message Pnp/ nPn. Therefore changes or modifications are required in the original program pertaining to collector identification program for pnp transistors (at locations 203D through 2048) and npn transistors (at locations 2068 through 207A) as given in Tables VII and VIII respectively.

Software flow charts. Software flow charts for main program and various subroutines are shown in Fig. 5.

РСВ and parts list are included only for the main interface diagram of Fig. 1. The actual-size, single-sided РСв for the same is given in Fig. 6 while its component layout is shown in Fig. 7.

CONVERSIONOF AUDIOCDPLAFER TO VIIDEO CD PLAVER - I
 PUNERJOT SINGH MANGAT
 G.S. SAGOO

The analogue technology is giving way to the digital technology as the latter offers numerous advantages. Digital signals are not only free from distortion while being routed from one point to another (over various media), but error-correction is also possible. Digital signals can also be compressed which makes it possible to store huge amounts of data in a small space. The digital technology has also made remarkable progress in the field of audio and video signal processing.

Digital signal processing is being widely used in audio and video CDs and CD playing equipment. These compact disks have brought about a revolution in the field of audio and the video technology. In audio CDs, analogue signals are first converted into digital signals and then stored on the cD. During reproduction, the digi-
tal data, read from the CD , is reconverted into analogue signals. In case of video signals, the process used for recording and reproduction of data is the same as used for audio cDs. However, there is an additional step involved-both during recording as well as reproduction of the digital video signals on/from the compact disk. This additional step relates to the compression of data before recording on the CD and its decompression while it is being read. As video data requires very large storage space, it is first compressed using MPEG- (Motion Picture Expert Group) compatible software and then recorded on the cD. On reading the compressed video data from the co, it is decompressed and passed to the video processor. Thus with the help of the compression technique hugeamount of video data (for about an hour) can be stored in one CD.

Fig. 1: Complete schematic layout and connection diagram for conversion of Audio CD to Video CD player

PARTS LIST-1	
Semiconductors:	
IC1	- LM7805 voltage regulator +5V
Resisters (All $1 / 2 \mathrm{WN}, \pm 5 \%$ metal/ carbon film, unless stated otherwise):	
R1	68 ohm
R2, R3	- 1 kilo-ohm
VR1	- 100 ohm cermet (variable resistor)
Capacitors:	
	- $1 \mu \mathrm{~F}$ paper (unipolar)
	- 10¢F, 16V electrolytic
Miscellaneous:	
	- 230 V AC primary to $12 \mathrm{~V}-0-12 \mathrm{~V}, 1 \mathrm{~A} \mathrm{sec}$. transformer
S1, S2	- Push-to-on tactile switch - MPEG decoder card (Sony Digital Tech.) - TV modulator (optional) - AF plugs/jacks (with screened wire) - Co-axial connectors, maleffemale - Co-axial cable

Conversion

An audio cD player, which is used to play only audio CDs, can be converted to play the video CDs as well. Audio CD players have all the required mechanism/functions to play video cDs, except an mpeg card, which is to be added to the player. This MPEG card is readily available in the market. This MPEG card decompresses the data available from theaudiocd player and converts it into proper level of video signals before feeding it to the television.

Construction

Step-by-step conversion of audio cd player to video cD player is described with reference to Fig. 1.

Step 1. Connection of mpeg card to Tv and step-down power transformer to confirm proper working of the mpeg card.

- Connect ic7805, a 5-volt regulator, to the mpeg card. Please check for correct pin assignments.
- Connect audio and video outputs of the

Fig 2: Photograph of TV scene

MPEG card to the audio/video input of TV via jacks 17 and $J 11$ respectively. Use only shiel ded wires for theseconnections.

- Check to ensure that the step-down transformer provides 12-0-12 volts at 1 ampere of load, before connecting it to the mpeg card. Connect it to the mpeg card via jack J 1.
- Switch on the tv to audio/video mode of operation. Adjust the 100 -ohm pre set connected at the video output of mpeg card to mid position.
- Switch on the mPEG card by switching on 230 volts main supply to the $12-0$ 12 volt transformer.
- If everything works right, ‘Sony Digital Technology' will be displayed on the television. The tv screen will display this for about 5 seconds before going blank. Adjust the 100 -ohm preset for proper level of video signals.
Step 2. Connections to audio cD player after confirmation of proper functioning of MPEG card during stepl.
- Open your audio cd player. Do this very carefully, avoiding any jerks to the audio cD player, as these may damage the player beyond repair.
- Look for the ic number in Table II (on page 47) that matches with any ic in your audio CD player.
- After finding the right IC , note its RF ef min pin number from the Table l.
- Follow the pCB track which leads away
form rf efm in pin of the ic and find any solder joint (land) on this PCB track. Solder a wire (maximum half meter) to this solder joint carefully. Other end of this wire should be joined to rf jack J2 of the mPEG card.
Caution: Unplug the soldering iron form the mains before soldering this wire because any leakage in the soldering iron may damage the audio CD player.
- Another wire should be joined between the ground of the audio CD player and the ground of jack 12 of the MPEG card.
- This finishes the connection of the mPEG card to the audio CD player.
Step 3. Playing audio and videocDs.
- Switch on the power for the audio CD player and the mpeg card.
- Put a video cD in the audio cD player and press its play button to play the video CD.
- After a few seconds the video picture recorded on the CD will appear on the television.
- The play, pause, eject, rewind, forward, track numbers, etc buttons present on the audio CD can be used to control the new video CD player.
Now your audio CD player is capable of playing video cDs as well. You can connect a power amplifier to the mPEG card to get a high-quality stereo sound. The author tested this project on many audio players including Thompson Diskman and

\left.| | | | | TABLE I |
| :--- | :--- | :---: | :---: | :---: |
| | POSSIBLE | | | |
| EXTRA FUNCTIONS | | | | |$\right]$

Kenwood Diskman. A photograph of one of the scenes in black and white is included as Fig. 2. (Please see its coloured dipping on cover page.)

No special РСв is required and hence the same is not included.

The author has perferred to use Sony Digital Technology Card (against kD680 RF35c of c-Cube Technology) because of many more functions it provides.

Additional accessibility features of this card (Sony Digital Technology), as shown in Table I can be invoked by adding two push-to-on switches between jack 8(J) 8) and ground via 1 K resistors (Fig 1). These will enhance the already mentioned functions and facilities available on this card, even though it has not been possible to exploit the card fully due to non-availability of technical details. I hope these additions will help the readers get maximum mileage from their efforts.

CONVERSION OF AUDIO CI PLAVER

and backward scan facility with 9-view pictures, slow-motion play, volume and tone control and R/L (right/left) vocal. TO VIDEO CD PLAYER — II

K.N. GHOSH

WPnt to convert your audio compact disk player into video compact disk player. Here is a simple, economical but efficient add-on circuit design that converts your audio cDplayer to video CD player.

Description

Decoder card. The add-on circuit is based on VCD decoder card, KD680 RF-3Sc, also known as mpeg card adopting mPEG1 (Motion Picture Expert Group) stan-
dard, the international standard specification for compressing the moving picture and audio, comprising a DSP (digital signal processor) ic dhip, CL860 from C-cube (Fig. 3). The vcD decoder card features small size, high reliability, and low power consumption (current about 300 ma) and real and gay colours. This decoder card has two play modes (Ver. 1.0 and Ver. 2.0) and also the forward Fig. 3: Layout diagram of MPEG card from c-cube

TABLE II DSP ICs and their EFM RF pin numbers			
DSP IC	EFM RF Pin	DSP IC	EFM RF Pin
KS 5950	5	CXA 1372Q	32,46
KS 5990, 5991	5	CXA 1471S	18, 27
KS 9210 B	5	CXA 1571S	18,35
KS 9211 B E, 9212	5	AN 8370 S	12,31
KS 9282	5,66	AN 83735	9, 35
KS 9283	66	AN 8800SCE	12
KS 9284	66	AN 8802SEN	9
CXD 1125 QX	5	TDA 3308	3
CXD 1130 QZ	5	LA 9200	35
CXD 1135	5	LA 9200 NM	36
CXD 1163 Q	5	LA 9211 M	72
CXD 1167 R	36	HA 12158 NT 46, 72	
CXD 1167 Q/QE	5	SAA 7210	3, 25
CXD 20109	9, 20	(40 pin)	
CXD 2500 AQ/BQ	24	SAA 7310	32
CXD 2505 AQ	24	(44 pin)	
		SAA 7341	36,38
CXD 2507 AQ	14	SAA 7345	8
		SAA 7378	15
CXD 2508 AQ	36	TC 9200 AF	56
CXD 2508 AR	36	TC 9221 F	60
CXD 2509 AQ	34	TC 9236 AF	51,56
CXD 2515 Q	36, 38	TC 9284	53
CXD 2518 Q	36	YM 2201/FK	76
LC 7850 K	7	YM 3805	8
LC 7860 N/K/E	7,8	YM 7121 B	76
LC 7861 N	8	YM 7402	4,71
LC 7862	30	HD 49215	71
LC 78620	11	HD 49233	19
LC 78620 E	11	AFS	
LC 7863	8	UPD 6374 CU 23	
LC 7865	8	UPD 6375 CU 46	
		M 50422 P	15
LC 7866E	7,8	M 50427 FP	15, 17
LC 7867 E	8	M 504239	17
LC 7868 E	8	M 515679	4
LC 7868 K	8	M 51598 FP	20
LC 78681	8	MN 35510	43
MN 6617	74	M 65820 AF	17
MN 6222	11	M 50423 FP	17
MN 6625 S	41	CX 20109	20,9
MN 6626	3, 62	SAA7311	25
MN 6650	6	M50122P	15
MN 66240	44	M 50123 FP	17
MN 66271 RA	44, 52	M50127 FP	17
MN 662720	44	UPD6374 CV	3
CXA 72S	18, 46	NM2210FK	76
CXA 1081Q	2, 27	YM2210FK	76

The decoder card converts your CD players or video games to vcd player to give almost dvD-quality pictures.

The decoder card mainly consists of sync signal separator, noise rejection cir-

Fig. 4: Layout of TV RF modulator

PARTS LIST-2	
Semiconductors:	
IC1	- LM78L05, voltage regulator +5V
IC2	- 78L12, voltage regulator +12 V
D1,D2	- 1N4001, rectifier diode
Capacitors:	
$\begin{aligned} & \mathrm{Cl} \\ & \mathrm{C} 2, \mathrm{C} 3 \end{aligned}$	- 2200 FF , 35V electrolytic - 100 $\mathrm{HF}, 16 \mathrm{~V}$ electrolytic
Miscellaneous:	
	- 230 V AC primary to $18 \mathrm{~V}-0-18 \mathrm{~V}$, 1A sec. transformer
	- MPEG decoder card (C-cube Digital Tech.)
	- TV modulator (optional)
	- AF plugs/jacks (with screened wire)
	- Co-axial connectors, maleffemale
	- Co-axial cable

put (av in) facility in their tv, can make use of a pre-assembled audio-video to RF converter (modulator) module of 48.25 MHz or 55.25 MHz (channel 2 or channel3), which is easily available in the market (refer Fig. 4). The audio and video signals from the decoder card are suitably modulated and combined at the fixed TV channel's frequency in the RF modulator. Theoutput from the modulator can be connected to antenna connector of a colour television.

Power supply unit: The vcD decoder card and therf modulator requires +5 V and +12 V regulated power supply respectively. Supply design usestwolinear regulators7805and 7812 (Fig. 5). The voltage regulators fitted with то 220-type heat sink should be mounted on \& CD player enclosure's

Fig. 6: Block diagram of connections to decoder card and codulator

Fig. 5: Power supply to cater for MPEG card and RF modulator cuit, digital to analogue converter, micro computer interface, video signal processor, and error detector, etc. Audio and video signals stored on a CD are in a highdensity digital format. On replay, the digital information is read by a laser beam and converted into analogue signals.

One can also use another vCD decoder card comprising an MPEG IC 680, from Technics, and a DSP IC chip, CXD2500, with powerful error-correction from Sony. Similarly, another card, KD2000-680RF comprising an MPEG IC dhip, cl680 from Technics and a DSP IC chip, mn6627 from C-cube.

RF modulator. For those who do not have audio-video in-
for fixing the decoder card ixing the decoder card, Rf modulator, and the power supply unit. Make appropriatediameter holes and fix them firmly.
2. Make holes of appropriate dimensions on the rear panel for fixing sockets for power supply and rf output.
3. Refer to Tablell (Combined for PartI and II) and confirm DSP chip type of the existing audio CD player for efm (eight to fourteenth modulation)/RF Signal (from optical pick-up unit of the audio cD player) pin number, connect efmin wire to this pin.
4. Make all the connections as per Fig. 6.

Text of artides on the above project received separately from the two authors have been been reproduced above so as to make the information on the subject as exhaustive as possible. We are further
adding the following information which we have been able to gather during the practical testing of the project at EFY.

1. There may be more than one РСв used in an audio CD player (i.e additional for fm radio and tape recorder functions) and even the dsp chips referred in Tablel, may not figureon it. F or example, wecould not find the subject ic used in aiwa audio CD player. The PCB, which is located dosest under the laser system, is related to CD

Fig. 7: Modified 5V regulator for enhancing current capability
player part. The DSP chip, more often than not, would be a multipin smt device. In the aiwa system we located two such chips (La9241m and lc78622e both from Sanyo). Their data-sheets, picked up from the Internet, revealed the former chip to be an ASP (analogue signal processor) and latter one (LA78622E) is the CD player DSP chip for which EFMin is not found in Tablel. For this chip EFMIN pin is pin 10 while pin 8 is the nearest digital ground pins-which we used.
2. Of the two converter cards (one displaying 'Sony Digital Technology' and the other displaying 'C-cube Technology' on the ctv screen), the latter card's resolution and colour quality was found to be very good when tested by us. The C-cube card needs a single 5V DC supply for its operation.
3. During testing it was ob-

Fig. 8: Two channel video modulator with FM sound
served that frequently, the picture/ frames froze on the cтv screen and the power to the MPEG converter card had to be switched off and on again. This fault was attributed to inability of 7805 regulator to deliver the required current (about 300 mA) to the MPEG card. The regulator circuit was therefore modified as shown in Fig. 7 to provide a bypass path for current above 110 mA (approximately). A step-down transformer of 9V-$0-9 \mathrm{~V}, 500 \mathrm{~mA}$ is adequate if the modulator has its own power supply arrange ment (refer paragraph 4 below).
4. RF modulator for TV channels E2 and E3 are available in the market complete with step-down transformer, hence there may not be any need to wire up a 12 V regulator circuit of part II.
5. Apart from the facilities (available in the mPEG decoder card KD680RF-3Sc from C-cube) as explained by the author, there are other facilities such as IR remote control of the card functions (via J ack J5) and realisation of change-over between nTSC and pal modes (via jack j4-no connections means paL mode). Similarly, J ack J 1 is meant for external audio and video input from exchange and connection of audio and video outputs to cTv. The foregoing information is available on document accompanying the MPEG decoder card. However, the detailed application/ information is not provided and as such we have not tested these facilities.
6. efm is a technique used for encoding digital samples of audio signals into series of pits and lands into the disc surface During playback these are decoded into digital representation of audio signal and converted to analogue form using digital-to-anal ogue converter for eventual feeding to the loud speakers.
7. For those enthusiasts who wish to rig-up their own video modulator, an application circuit from National Semiconductor Ltd, making use of IC LM2889, which is pin for pin compatible with LM1889 (rf section), is given in Fig 8.
-Tech Editor

MUITIPURPOSE CIRCUIT FOR TELEPHONES

RANJITH G. PODUVAL

This add-on device for telephones can be connected in parallel to the telephone instrument. The circuit
happens, the voltage across transistor T1's base-emitter junction falls below its conduction level to cut it off. As a result tran-
the telephone ring.
A cID can be connected using a relay. The relay driver transistor can be connected via point a as shown in the circuit. To use the circuit for warning against misuse, switch sl can be left in on position to activate the piezo-buzzer when anyone tries to tap the telephone line. (When the telephone line is tapped, it's like the off-hook mode of the telephone hand-set.)

Two 1.5V pencil cells can provide Vcc1 power supply, while a separate power sup- provides audio-visual indication of on-hook, off-hook, and ringing modes. It can also be used to connect the telephone to a CID (caller identification device) through a relay and also to indicate tapping or misuse of telephone lines by sounding a buzzer.

In on-hook mode, 48V dc supply is maintained across the telephone lines. In this case, the bi-colour led glows in green, indicating the idle state of the telephone. The value of resistor R1 can be changed somewhat to adjust the led glow, without loading the telephone lines (by trial and error).

In on-hook mode of the handset, potentiometer VR1 is so adjusted that base of $\mathrm{T1}$ (BC547) is forward bi-
ased, which, in turn, cuts off transistor T2 (BC108). While adjusting potmeter VR1, ensure that the led glows only in green and not in red.

When the hand-set is lifted, the voltage drops to around 12 V dc. When this

sistor pair т2-т3 starts oscillating and the piezo-buzzer starts beeping (with switch s1 in on position). At the same time, the bi-colour led glows in red.

In ringing mode, the bi-colour led flashes in green in synchronisation with
ply for Vcc 2 is recommended to avoid draining the battery. However, a single 6-volt supply source can be used in conjunction with a 3.3 V zener diode to cater to both Vcc2 and Vcc1 supplies.

SIMPLE CODE LOCK

YASH D. DOSHI

The circuit described here is of an electronic combination lock for daily use. It responds only to the right sequence of four digits that are keyed in remotely. If a wrong key is touched, it resets the lock. The lock code can be set by connecting the line wires to the pads A, B, C, and D in the figure. For
example, if the code is 1756 , connect line 1 to A, line 7 to b, line 5 to c, line 6 to d and rest of the lines-2, 3, 4, 8, and 9-to the reset pad as shown by dotted lines in the figure.

The circuit is built around two CD4013 dual-d flip-flop ics. The clock pins of the four flip-flops are connected to A, B, C,
and D pads. The correct code sequence for energisation of relay RL1 is realised by clocking points A, B, C, and D in that order. The five remaining switches are connected to reset pad which resets all the flip-flops. Touching the key pad switch a/ B/C/D briefly pulls the dock input pin high and the state of flip-flop is altered. The Q output pin of each flip-flop is wired to D input pin of the next flip-flop while o pin of the first flip-flop is grounded. Thus, if correct clocking sequence is followed then Iow level appears at Q2 output of IC2 which energises the relay through relay driver
transistor T 1 . The reset keys are wired to set pins 6 and 8 of each ic. (Power-on-reset capacitor c1 has been added at efy during testing as the state of Q output is indeterminate during switching on operation.)

This circuit can be usefully employed in cars so that the car can start only when the correct code sequence is keyed in via the key pad. The circuit can also be used in various other applications.

AUTOMAIC BATHROOM LIGHT

J AYAN A.R.

a reference potential set by preset VR1. The preset is so adjusted as to provide an optimum threshold voltage so that output of IC2(a) is high when the door is closed and low when the door is open. Capacitor cl is connected at the output to filter out unwanted transitions in out-

This circuit is used to automate the working of a bathroom light. It is designed for a bathroom fitted with an automatic door-doser, where the manual verification of light status is difficult. The circuit also indicates whether the bathroom is occupied or not. The cirait uses only two iCs and can be operated from a 5 V supply. As it does not use any mechanical contacts it gives a reliable performance.

One infrared LED (D1) and one infrared detector diode (D2) form the sensor part of the circuit. Both the infrared Led and the detector diode are fitted on the frame of
the door with a small separation between them as shown in Fig. 1. The radiation from IR led is blocked by a small opaque strip (fitted on the door) when the door is closed. Detector diode D2 has a resistance in the range of meg-ohms when it is not activated by IR rays. When the door is opened, the strip moves along with it. Radiation from the IR LED turns on the IR detector diode and the voltage across

Fig. 1

it drops to a low level.

Com parator LM358 IC2(a) compares the voltage across the photodetector against
put voltage generated at the time of opening or closing of the door. Thus, at point A, a low-to-high going voltage transition is available for every closing of the door after opening it. (See waveform a in Fig. 2.)

The second comparator Ic2(b) does the reverse of $\operatorname{IC2}(\mathrm{a})$, as the input terminals are reversed. At point $в$, a low level is available when the door is closed and it
switches to a high level when the door is opened. (See waveform в in Fig. 2.) Thus, a low-to-high going voltage transition is available at point в for every opening of the door, from the closed position. Capacitor c2 is connected at the output to filter out unwanted transitions in the output voltage generated at the time of closing or opening of the door.
ic 7474, a rising-edge-sensitive dual-d flip-flop, is used in the circuit to memorise the occupancy status of the bathroom. ic1(a) memorises the state of the door and acts as an occupancy indicator while

Fig. 3 IC2(b) is used to control the re-
lay to turn on and turn off the bathroom light. \bar{Q} output pin 8 of $\operatorname{ICl}(\mathrm{b})$ is tied to D input pin 2 of $\operatorname{IC1}(a)$ whereas Q output pin 5 of IC1(a) is tied to D input pin 12 of IC1(b).

At the time of switching on power for the first time, the resistor-capacitor combination R3-c3 clears the two flip-flops. As a result Q outputs of both $\operatorname{IC1}(\mathrm{a})$ and $\operatorname{IC1}(\mathrm{b})$ are low, and the low level at the output of $\operatorname{Ic1}(\mathrm{b})$ activates a relay to turn on the bathroom light. This operation is independent of the door status (open/dosed).

The occupancy indicator red LED (D3) is off at this point of time, indicating that the room is vacant.

When a person enters the bathroom, the door is opened and closed, which provides clock signals for IC1(b) (first) and IC1(a). The low level at point c (pin 5) is clocked in by ıc1(b), at the time of opening the door, keeping the light status unchanged.

The high level point $D(\operatorname{pin} 8)$ is clocked in by IC1(a), turning on the occupancy indicator LED (D3) on at the time of
closing of the door. (See waveform c in Fig. 2.)

When the person exits the bathroom, the door is opened again. The output of IC1(b) switches to high level, turning off the bathroom light. (See waveform D in Fig. 2.) The closing of the door by the door-closer produces a low-to-high transition at the clock input (pin 3) of ic1(a). This clocks in the low level at Q output of IC1(b) point D to Q output of IC1(a) point c , thereby turning off the occupancy indicator.

SMART FLUID LEVEL INDICATOR

THOMMACHAN THOMAS

Most of the fluid level indicator circuits use a bar graph or a seven-segment display to indicate the fluid level. Such a display using leds or digits may not make much sense to an ordinary person. The circuit presented here overcomes this flaw and displays the level using a seven-segment dis-play-but with a difference. It shows each level in meaningful English letters. It displays the letter E for empty, L for low, H for half, a for above average, and F for full tank.

The circuit is built using cmos ics. CD4001 is a quad. NOR gate and CD4055 is a BCD to seven-segment decoder and dis-
play driver ic. This decoder ic is capable of producing some English alphabets besides the usual digits 0 through 9 . The BCD codes for various displays are given in Table I. The bCD codes are generated by NOR gates because of their interconnections as the sensing probes get immersed in water. Their operation being self-explanatory is not included here.

Note that there is no display pattern like E or F available from the ic. Therefore to obtain the pattern for letters E and F, transistors $T 1$ and $T 2$ are used. These transistors blank out the unnecessary segments from the seven-segment display. It can be seen that letter E is
generated by blanking ' b ' and ' c ' segments of the seven-segment display while it decodes digit 8. Letter F is obtained by blanking segment ' b ' while it decodes letter P .

As cmos ics are used, the current con-

TABLE I				
D	C	B	A	DISPLAY
L	L	L	L	0
L	L	L	H	1
-	-	-	-	2
-	-	-	-	3
-	-	-	-	4
-	-	-	-	5
-	-	-	-	6
-	-	-	-	7
H	L	L	L	8
H	L	L	H	9
H	L	H	L	L
H	L	H	H	H
H	H	L	L	P
H	H	L	H	A
H	H	H	L	-
H	H	H	H	BLANK

sumption is extremely low. This makes it possible to power the circuit from a battery. The input sensing current through the fluid (with all the four probes im-
mersed in water) is of the order of $70 \mu \mathrm{~A}$, which results in low rate of probe deterioration due to oxidation as also low levels of electrolysis in the fluid.

Note: This circuit should not be used with inflammable or highly reactive fluids.

AUTOMATIC SCHOOL BELL SYSTEM

Dr D.K. KAUSHIK

This is an effective and useful project for educational institutions. In most schools and colleges, the peon rings the bell after every period (usually of a 40-minute duration). The peon has to depend on his wrist watch or clock, and sometimes he can forget to ring the bell in time. In the present system, the human error has been eliminated. Every morning, when the school starts, someone has to just switch on the system and it thereafter work automatically.

The automatic microprocessor controlled school bell system presented here
has been tested by the author on a Vinytics' microprocessor-8085 kit (VMc8506). The kit displays the period number on two most significant digits of address field and minutes of the period elapsed on the next two digits of the address field. The data field of the kit displays seconds continuously.

The idea used here is very simple.

few seconds. The program (software) and data used for the purpose are given below in mnemonic and machine code forms. The program is self-explanatory.

The program and data have been entered at specific memory locations. However, the readers are at liberty to use any other memory area in their kits, depending on their convenience. Two monitor programs (stored in kit's rom/EPRom) at locations 0347H (for clearing the display) and 05 DOH (for displaying contents of memory locations 2050H through 2055 in the address and data fields respectively)
have been used in the program. Please note that before calling the display routine, registers а and в are required to be initialised with either 00 or 01 to indicate to the monitor program as to where the contents of above-mentioned memory locations are to be displayed (e.g. address field or data field), and whether a dot is to be displayed at the end of address field or not. (Readers should refer to their kit's documentation before using the display routine.) In Vinytics' kit, if register A contents are 00, the address field is used for display, and if it is 01, the
data field is used for display. Similarly, if register в contains 00 then no dot is displayed at the end of address field, else if в contents are 01, a dot is displayed.

When the program is executed on the microprocessor kit, a bell sound would be heard for a few seconds. The address and data fields would initially display:

$$
01 \quad 00 \quad 00
$$

01 indicates start of first period with 00 as elapsed minutes and 00 seconds in the data field. The data field (seconds) are continuously incremented.

Address Op-code	Label	Mnemonic	Comments
20 FC	ME 80		MVI A, 80H

Address	OP CODE LABEL	Mnemonic	Comments	Address	OPCODE	LABEL	Mnemonic	Comments
21 CD	C3 0921	J MP AA	Repeat for next period	$\begin{aligned} & \text { DATA } \\ & 2050 \end{aligned}$	00			MSD of period no.
DELAY	SUBROUTINE			2051	00			LSD of period no.
2500	1 B NEXT	DCX D		2052	00			MSD of minutes
2501	7A	MOV A, D		2053	00			LSD of minutes
2502	B3	ORA E		2054	00			MSD of seconds
2503	C2 0025	J NZ NEXT		2055	00			LSD of seconds
2506	C9	RET						

DEsIALINMG AN RF PROBE

N.S. HARISANKAR, VU3NSH

Radio frequency probe is used to directly measure the level of RF RMS voltage present across two points. It is one of the most useful test instruments for home brewers as well as for communication equipment service/design labs.

RF voltage level being measured provides useful information only when the probe has been designed for use with a specific multimeter. The design of RF probe is a function of the meter we intend to use it with. If a meter with a different input resistance is used with the probe, the reading will be incorrect. The value of R_{x} (refer figure) is so chosen that when this resistor is connected in parallel with input resistance of the multimeter, the peak value is about 1.414 times the rms voltage. Resistor R_{x} has to drop this excess voltage so that meter indication is accurate. If we know the input resistance of the meter, we can calculate the value of R_{x} with the help of the following relationship:

Let meter dc input resistance

$$
\mathrm{X} 1.414=\mathrm{R}_{\mathrm{Y}}
$$

Then $R_{x}=R_{y}$ - meter $D C$ input resistance

For example, if meter input resistance is 20 meg-ohm, $R_{y}=28.28$ megohm and $R_{x}=8.28$ meg-ohm.

We can convert the rf voltage level

TABLE I Voltage to Watts Conversion for 50 ohms Termination	
RMS (V)	RF Power (W)
2.24	0.1
3.88	0.3
5.0	0.5
7.08	1
12.25	3
15.90	5
20.0	8
22.4	10
38.75	25
41.85	35
50.0	50

In other words, for 5 -watt power in a 50-ohm load, the voltage across the load is 15.85 volts.

The rectified $D C$ voltage at the cathode of diode D1 is at about the peak level of the rf voltage at the tip of the probe. Use shielded cable in between the probe output and meter. It will act as feedthrough capacitance and thus avoid rf interference. The maximum rf input voltage level depends on the peak inverse voltage (PIV) of diode D1. The shielded lead length is too large to give accurate results at unf. Please refer Tables I and II

Table II	
Meter DC Impedence	Rx
20 Meg -ohm	8.25 Meg -ohm
10 Meg -ohm	4.14 Meg -ohm
1 Meg (ohm	41.4 kilo-ohm
20 kilo-ohm	8.28 kilo-ohm

(E) SO meas ured across a given load resistance (R) to RF watts (W) using the following relationship:

Power p
$=E^{2} / R$
 watts (w)

For example, if rf probe voltage reading across a load resistance of 50 ohms is found to be, say, 15.85 volts, the power in the load $=15.85 \times 15.85 / 50=5 \mathrm{~W}$ approx.
for ready conversion of RF voltagelevel (RMS) to equivalent power across a50-chmload and deduction of R_{x} valuefor a given meter'S DC input resistancerespectively.

February

PC BASED SPEED MONITORING SYSTEM

SANTHOSH J AYARAJ AN

This project describes the software and hardware necessary to monitor and capture in real time the speed of any rotating object. The speed may be defined/stored/displayed in any of the three units: RPM (rev./minute), RPS (rev./second), or RPH (rev./hour). The system uses a sampling time of two seconds and can store up to 16 minutes of data per file. The x and y axes can be scaled to read any speed and the x-axis can be 'stretched' to observe clustered points.

The hardware mainly comprises a proximity switch whose output is connected to the printer (LPT1) port of the computer through an optocoupler. The proximity switch is used as a speed-sensor. The program is written in C++ and has effective error handling capability and a help facility. This system can be used to monitor the speed of rotating parts in the industry or to read and
record wind speeds.

The hardware interiace

The hardware interface circuit is given in Fig. 1. A 230 V AC primary to $0-9 \mathrm{~V}$, 250 mA secondary transformer followed by IC 7805 is used for catering to the power supply requirement for proximity switch and the opto-coupler. The proximity switch, as shown in Fig. 2, is a 3-wire switch (e.g. PG Electronics' EDP101) which operates at 6 V to 24 V DC.

The inductive type proximity switch senses any metal surface from a distance of about 5 mm to 8 mm . Thus, a gear or fan blade is ideal for counting the number of revolutions. The number of teeth that trigger (switch-on) the proximity switch during every revolution are to be known for the software to calculate the speed of
for solware to calculate the speed
the machinery. The output of the circuit, available across resistor R2, is fed to the PC via 25-pin 'D' connector of parallel port LPT1. Pin 11 pertains to data bit D7 of the input port 379(hex) of the LPT1 port having base address 378(hex), and pin 25 is connected to PC ground. (In fact, pins 18 through 25 of theparallel port arestrapped together and connected to ground.)

The proximity switch is mounted on a stationary part, such as a bolt or stud, in such a way that it senses each tooth of the rotating part as shown in Fig. 3. Two fixing nuts are provided on the threaded

As interface circuit can easily be wired on any general-purpose PCB, no PCB layout is included for it. The two wires to be extended to 25 -pin parallel port may be connected using a 25-pin male 'D' connector.

Lab Note: Magnetic proximity switches, from various manufacturers, are available in the market. The important specifications include operating DC voltage range, operating current and its sensitivity, i.e. the maximum distance from a metallic object such that the switch operates. These specifications are normally mentioned on the proximity switch itself or in the accompanying literature.

The software

The structural block diagram of the software is shown in Fig. 4. The software has the following four main modules, which are activated from the main menu using four of the function keys, F1 through F4.

Fig. 1: Interface circuit for PC based speed monitoring system
body of the proximity switch for securing it firmly onto a fixed part of the machinery.

The software prompts the operator to enter the number of teeth (being sensed during every revolution), which is used by

Fig. 2: Proximity switch the program for calculation of RPM, RPS, or RPH, as the case may be. In any specific application, where non-metallic rotating parts are present and inductive proximity switch cannot be used, one may use photoelectric switch to do the counting for 2 -second sampling period.

Fig. 3: Mounting of proximity switch

Fig. 4: Structural block diagram of software

HELPS.PG1 file contents

+++SPED MASTER REPP PAGE+++

This software can be used to capture and monitor the speed of any rotating part for a maximum of eight minutes with a total sampling time of two seconds. The software has four menu levels which can be selected from the Main Menu.

In Capture/Monitor mode the software has two trigger modes, viz, Manual, which waits for a key press and Auto, which waits for the first pulse from the sensor.

The captured file can be viewed in any X-axis scale. However, all points coming out of the view page are dipped off.

When using the gear teeth for speed calculation, please enter the teeth per revolution to enable internal calculation of speed to be made.

Enter the filename where the data is to be stored, when prompted. The same file can be viewed in the view page option. If an invalid file name is entered, or the file cannot be opened, an error is displayed and the user can exit to Main.
...Press Any Key to Return to Main...

1. Speed monitor and capture mod-

 ule. This module is used to monitor the speed and store the data in a user-defined file.(a) The module first prompts for the filename. The file name is entered with an extension. DAT.
(b) The next entry is called trigger mode'. It specifies how the software should start monitoring and capturing data. The options are: $1=$ manual and $2=$ auto. If option 1 is selected, the system waits for a key press to start the monitoring and capturing operation.

If option 2 (auto mode) is selected,

FILE Contents of DEMO.DAT							
Showing Rev/min.							
1	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0
0	0	0	15	0	0	0	0
0	0	0	30	0	0	0	0
0	0	0	0	0	15	0	0
0	15	0	90	0	15	0	0
0	15	0	0	0	0	0	0
0	120	0	0	0	0	0	15
30	30	0	0	30	0	0	0
0	150	0	0	0	0	0	0
30	0	0	0	0	0	0	15
0	30	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	15	60	0	0	15	0	0
30	150	0	0	0	0	0	
0	0	0	0	0	15	0	

PARTS LIST	
Semiconductors:	
IC1	7805 regulator 5 V
	- MCT2E opto-coupler
Resistors (all $1 / 4$ watt, $\pm 5 \%$ metal/ carbon film, unless stated otherwise)	
	- 300-ohm
	- 150 -ohm
Capacitors:	
	- $1000 \mu \mathrm{~F}, 16 \mathrm{~V}$ electrolytic - $0.22 \mu \mathrm{~F}$ polyster
Miscellaneous:	
	- 230 V AC primary to $0-9$, 250 mA sec. transformer
BR-1A	- Bridge rectifier, 1-amp.
	- Proximity switch (refer text)

the system waits for the first pulse from the proximity switch to start monitoring and capturing of data.
(c) The next entry relates to 'units', which has the following further options:
$1=$ Revolutions/min.
2 =Revolutions/sec.
3 =Revolutions/hr
(d) The next entry pertains to the 'range of speed,' which must be more than the maximum speed that is expected. The options are:

$$
1=400 \text { units }
$$

$2=800$ units, etc
(e) The next entry concerns the 'number of teeth' and represents the number of pulses from the proximity switch per revolution.

After making the above entries, the following message is displayed on the monitor screen:
"Trigger mode: Auto (or Manual) Waiting for first pulse (or Press any key to start)" depending on the trigger mode. If manual mode has been selected, then hit any key to start. If auto mode is selected, the software waits for the first pulse from the proximity sensor to proceed. The display then shows the speed in the units selected and the capture file name. Pressing ESC exits the monitor mode after closing the capture file. Pressing any other key re turns to main menu.
2. Viewing a graph file. This module is used to view an existing data file. Sequential contents of a DEMO.DAT file are shown in a box (using eight columns). If a non-existant filename is entered, the software detects the opening error and prompts the user for re-entering the filename. The various prompts for entering the required data are:
(a) File name-Enter the full filename
with extension.
(b) Enter the x-axis scale factor to enable the graph to be 'stretched' on the x axis to observe cramped points properly. After entering the x-axis scale, the graph appears along with all relevant data, like scale factors for x and y axis, file name,
and units, etc.
(c) While still in the graph mode, you may view a new graph after pressing F1. For returning to the main menu, press F2.
3. Help. This module provides one page of help and reads from a file called

HELPS.PG1. If this file cannot be opened, or is not available, the software prompts with "Help file not found or cannot be opened." Pressing any key from the help page returns one to main menu. The contents of HELPS.PG1 are given in the box (on previous page).

Program Listing for SPEEDM.GPP

\#include<conio.h>
\#nclude<iostream.h>
\#nclude<graphics.h>
\#nclude<dos.h>
\#ncludestdio.h>
\#nclude<time.h>
\#nclude<fstream.h>
\#nclude<process.h>
\#nclude<stdlib.h>
void startgraphics();//start graphics system//
void openingmenu();//opening menu//
void monitor();//monitor and save to file//
float readspeed(int unit,int teeth);//read the speed//
void display(int unit);//display the speed//
void view();/Niew a Speed vs Time Graph//
void grid();//Draw the graph grid//
void displayhelp(char helpfilename[10]);
void exiit();
void help();
int roundoff(float number);
//Global Variables//
int unit;int teeth;
float speed;
char monitorfile[8];
int gdriver;int gmode;
int mid;
//Program main menu//
void main()
\{
startgraphics();
openingmenu();
\}
//Graphics initialisation//
void startgraphics()
\{
registerbgidriver(EGAVGA_driver);
registerbgifont(small_font);
registerbgifont(triplex font);
int gdriver = DETECT, gmode;
initgraph(\&gdriver, \&gmode, "'");
\}
//Opening menu//
void openingmenu()
\{
setfillstyle(LTSLASH_FILL,5);
bar(10, 10, 635, 470);
setlinestyle(SOLID_LINE,0,2);
rectangle(10,10,635,470);
setlinestyle(SOLID_LINE,0,2);
rectangle($200,40,400,90$);
setcolor(BLUE);
line(200,91,400,91);
line(200,92,400,92);
line(401,90,401,40);
settextstyle(2,HORIZ_DIR,8);
setcolor(YELLOW);
outtextxy(220,50,"SPEED TRACK");
setcolor(LIGHTBLUE);
outtextxy(150,120,"1.SPEED MONITOR \& CAPTURE - F1");
setcolor(LIGHTRED);
outtextxy(150,180,"'2.VIEW SPEED vs TIME GRAPH - F2");
setcolor(LIGHTMAGENTA);
outtextxy(150,240,"3.SPEED TRACK HELP F3");
setcolor(LIGHTCYAN);
outtextxy(150,300,"4.EXIT TO SHELL - F4"); setcolor(LIGHTGREEN);
outtextxy(180,360,"Enter your choice ");
outtextxy(200,383,"(F1 TO F4) ");
USERCHOICE:
while(!kbhit())
\{\}
char userchoice=getch();
switch(userchoice)
\{
case (char(59)):monitor();break;
case (char(60)):view();break;
case (char(61)):help();break;
case (char(62)):exiit();break;
default:goto USERCHOICE;
\}
//Monitoring the speed online and storing the data//
void monitor()
\{
int s;int t;
int trigger;
int yrange;
char unitff[8];
int speedf;
restorecrtmode();
clrscr();
window(1,1,80,25);
clrscr();
textcol or(YELLOW);
textbackground(LIGHTBLUE);
gotoxy(25,3);
cprintf(" - S P E E D T R A C K -");
gotoxy (25,4);
cprintf(" $=$
gotoxy (25,6);
cprintf("MONITOR \& CAPTURE PAGE");
window(10,8,75,8);
textcol or(YELLOW);
clrscr();
cprintf("Enter file name to store Speed data (****.***) - ");
scanf("\%8s", \&monitorfile);
GETTRIGGER:
textcol or(YELLOW);
clrscr();
cprintf("Enter trigger mode(1=Manual,2=First pulse) - ");
scanf("\%d", \&trigger);
if(trigger<1 || trigger>2)
\{
clrscr();
textcolor(YELLOW+BLINK);
cprintf(".......Value out of range,Enter 1 or
2........");
delay(2000);
goto GETTRIGGER;
\}
GETUNIT:
textcol or(YELLOW);
clrscr();
cprintf("Enter Unit for Speed(1=Rev/min, $2=$ Revs/ sec,3=Revs/Hr) - ");
scanf("\%d", \&unit);
if(unit<1 || unit>3)
\{
textcolor(YELLOW+BLINK);
clrscr();
cprintf("Value out of range............ ");
delay(2000);
goto GETUNIT;
\}
GETRANGE:
textcolor(YELLOW);
clrscr();
cprintf("Enter Range for $\operatorname{Speed}(1=400$ units, 2=800 units..etc) - ");
scanf("\%d", \&yrange);
if(yrange<1 || yrange>100)
\{
textcolor(YELLOW+BLINK);
clrscr();
cprintf("Value out of range............ ");
delay(2000);
goto GETRANGE;
\}
GETTEETH:
textcolor(YELLOW);
clrscr();
cprintf(" Enter Number of teeth for Sensor - ");
scanf("\%d", \&teeth);
if(teeth<1 || teeth>100)
\{
textcol or(YELLOW+BLINK);
clrscr();
cprintf("Value out of range............ '
delay(2000);
goto GETTEETH;
\}
//Open the file for data storage
fstream infile;
infile.open(monitorfile,ios::out);
//Store the units
char *unitf1 = "Rev/min";
char *unitf2 = "Rev/sec";
char *unitf3 = "Rev/hr" ;
switch(unit)
\{
case 1:infile<<unitf1<<endl;break;
case 2:infile<<unitf2<<endl;break;
case 3:infile<<unitf3<<endl;break;
\}
//Entering the units and y scale to capture file//
//fstream infile;
//infile.open(monitorfile,ios::out);
infile<<yrange<<endl;
clrscr();
//Setting the trigger mode//
switch(trigger)
\{
case 1:textcolor(YELLOW+BLINK);cprintf ("Trigger mode: Manual ..Press any key to Start");getch();break;
case 2:textcolor(YELLOW+BLINK);cprintf
("Trigger mode: Auto..Waiting for first pulse..");
$\mathrm{s}=\mathrm{inp}(0 \times 379) ; \mathrm{t}=\mathrm{s}$; while($\mathrm{s}=\mathrm{t}) \mathrm{s}=$ inp(0x379);break; default:textcolor(YELLOW+BLINK);cprintf ("Trigger mode: Manual ..Press any key to Start"); getch();break;
\}
startgraphics();
for(int pointno=1;pointno<481;++pointno)
\{
char in;
display(unit);
speedf=roundoff(speed);
infile<<speedf<<endl;
if (kbhit())
\{
if $\left((\right.$ in $=$ getch ()$\left.)=\backslash x 1 B^{\prime}\right)$ break;
$\}$
infi
infile.close();//Close the file,clean up and return to main//
restorecrtmode();
window(10,8,75,8);
textcolor(YELLOW+BLINK);
cprintf("Data Capture Interrupted or File full(960
sec)..Press any key..");
getch();
startgraphics();
openingmenu();
\}
//Read the speed and convert into the asked units//
float readspeed(int unit,int teeth)
\{
int sett=255;int tes=255; $\mathrm{mid}=0$;
clock_t start, end=0;
sett=inp(0x379);
tes=sett;
for(start=clock();(end-start)/CLK_TCK <2.0; end=clock())
\{
sett=inp(0x379);
if(sett! =tes)+ +mid;
tes=sett;
\}
//Calculation of the speed depending on unit selected//
switch(unit)
\{
case 1:return(mid*15.0/(teeth));
case 2:return(mid/(4.0*teeth));
case 3:return(mid*900.0/teeth);
default:return(mid/(4.0*teeth));
\}
//Display the speed on the screen update every 2 secs//
void display(int unit)
\{
char msgd[80];
char msgf[80];
fstream infile;
setcol or(LIGHTRED);
setbkcolor(LIGHTGREEN);
settextstyle(1,HORIZ_DIR,4);
rectangle(5,5,630,470);
outtextxy(175,30,"SPEED MASTER");
moveto(150,400);
outtext("Press ESC to exit.....");
outtextxy(150,300,"Capture file =");
sprintf(msgf, "\%s", monitorfile);
outtextxy(400,300,msgf);
moveto(150,100);
outtext("Speed ");
switch(unit)
\{
case 1:outtextxy(250,100,"in Revs/Min");break;
case 2:outtextxy(250,100, "in Revs/Sec");break;
case 3:outtextxy(250,100,"in Revs/Hr");break;

\}

speed=readspeed(unit,teeth);
cleardevice();
sprintf(msgd, "\%f", speed);
outtextxy(250,200,msgd); out
void view()//Niew a speed vs time graph// \{
VIEWSTART:
closegraph();
int xscale=1;int yscale;
char msgx[2];char msgmaxy[5];char msgmaxx
[5];char msgy[2];char msgun[8];char gunits[8];
char msgfile[10];
char filename[8];
char msgpoint[5];
int coordinate[10000];
int errorcode;
fstream infile;
window(1,1,80,25);
clrscr();
textcolor(RED);
textbackground(BLUE);
gotoxy (25,3);
cprintf("- S P E E D M A S T E R - ");
gotoxy(25,5);
cprintf(" VIEW FILE PAGE ");
window(10,8,50,8);
textcolor(YELLOW);
clrscr();
cprintf(" Enter name of file to view - ");
scanf("\%8s", \&filename);
scalefactor:
int $\mathrm{i}=0$;int pointcount $=0$;
XAXIS:
clrscr();
cprintf(" Enter X axis scale factor - ");
scanf("\%d", \&xscale);
if(xscale $<0| |$ xscale >9) goto XAXIS;
infile.open(filename,ios::in);
if(infile.fail())
\{
window(10,8,70,9);
textcolor(YELLOW+BLINK);
clrscr;
cprintf("..Error opening file or file does not exist... $\mathrm{n} \backslash \mathrm{r}$ Press F3 to exit,F4 to re-enter "); ERRORGRAPH:
while (!kbhit())
\{\}
char choicegraph;
choicegraph=getch();
switch(choicegraph)
\{
case (char(62)):goto VIEWSTART;
case (char (61)):main();break;
default:goto ERRORGRAPH;
\}
infil
(nile>>gunits>>yscale;
while(!infile.eof())
\{
infile>>coordinate[i];

+ + ;
++pointcount;
\}
infile.close();
startgraphics();
cleardevice();
setcol or(CYAN);
setbkcolor(DARKGRAY);
rectangle(10,40,490,440);
settextstyle(2,HORIZ_DIR,6);
outtextxy(140,15,"Speed Master..GRAPH VIEW
PAGE..");
setcolor(GREEN);
outtextxy(492,40,"Graph Variables");
outtextxy(492,60,"X scale =");
outtextxy(492,75,"Y scale =");
outtextxy(492,90,"Units =");
outtextxy(492,105,"File =");
outtextxy(492,120,"Points =");
setcolor(GREEN);
outtextxy(492,150,"Options:");
outtextxy(492,165,"F1= New Graph");
outtextxy(492,180,"F2= Main Menu");
outtextxy(492,210,"NOTE:");
outtextxy(492,225,"X axis=960sec");
outtextxy(492,240,"Y axis=400units");
outtextxy(492,255,"For Xscale=1");
outtextxy(492,270,"and Yscale=1");
setcol or(YELLOW);
sprintf(msgx, "\%d", xscale);
outtextxy(580,60, msgx);
sprintf(msgy, "\%d", yscale);
outtextxy(580,75, msgy);
sprintf(msgun, "\%s", gunits);
outtextxy(580,90, msgun);
sprintf(msgfile, "\%5s", filename);
outtextxy(565,105, msgfile);
sprintf(msgpoint, "\%d", pointcount);
outtextxy(567,120, msgpoint);
sprintf(msgmaxx, "\%d", (960/xscale));
outtextxy(480,450,msgmaxx);
sprintf(msgmaxy, "\%d", (400*yscale));
outtextxy(10,20,msgmaxy);
outtextxy(60,20,msgun);
outtextxy(480,460,"Seconds");
grid();
setviewport(10,40,490,440,1);
setcol or(GREEN);
int $x l=0$;int $y l=0$;
int j;
for ($\mathrm{j}=0 ; \mathrm{j}$ pointcount $-1 ;+\mathrm{H}$)
\{
line(x1*xscale,400-y1/yscale,(j+1)*xscale,400coordinate[j]/yscale);
$x 1=1+1$;
yl=coordinate[j];
\}
GRAPHMENU:
while (!kbhit())
\{\}
char choiceg;
choiceg=getch();
switch(choiceg)
\{
case (char(59)):goto VIEWSTART;
case (char (60)):closegraph();main();break;
default:goto GRAPHMENU;
\}
\}
//To draw the graph grid//
void grid()
\{
int i;
setcolor(RED);
for(i=140;i<440;i=i+100)
line(10,i,490,i);
setcolor(BLUE);
for ($i=70 ; i<490 ; i=i+60$)
line(i, 40, i, 440);
\}
//Main help call function//
void help()
\{
closegraph();
drscr();
displayhelp("HELPS.PG1");
getch();
\}
//Exit to shell with graphics clean up//
void exiit()
\{

CONSTRUCTION

cleardevice();	infile.open(hel pfilename,ios::in);	main();
setbkcolor(LIGHTGREEN);	if(infile.fail())	
setcolor(RED);		//Function to round off the float number to the
moveto(150,200);	window(10,8,70,9);	nearest integer//
outtext("Exiting to DOS..");	textcolor(YELLOW+BLINK);	int roundoff(float number)
delay(2000);	clrscr;	
closegraph();	cprintf(".....HELP NOT AVALABLE OR ERROR	int quotient;
exit(1);	OPENING FILE..... $\backslash n \backslash r$....Press any KEY TO	float result;
\}	RETURN TO MAIN....");	quotient=int(number);
//Display the helpfile if resident or else indicate	getch();	result=number-quotient;
error//	main();	if(result>0.5)
void displayhelp(char helpfilename[10])		
	while(!infile.eof())	return(quotient+1);
fstream infile;		$\text { \} }$
textbackground(BLACK);	infile.getline(buffer,max);	else
window($1,1,80,25$);	cout<<buffer;	
textcolor(LIGHTRED);	cout<<endl;	return(quotient);
const int max=80;		
char buffer[max];	infile.close(); getch():	\}

STEREO CASSETIE PLAYER

An electronics hobbyist always finds pleasure in listening to a song from a cassette player assembled with his own hands. Here are the details of a stereo cassette player with the following features, which many electronics enthusiasts would love to assemble and enjoy:

1. Digital 4 -function selector (radio, tape, line input, and transmit).
2. Four sound modes (normal, low boost, hi-fi, and x-bas).
3. Bass and treble controls.
4. Function and output level displays.
5. Built-in fm transmitter for cordless head-phones.

Description

The functional block diagram of the ste-
reo cassette player is shown in Fig. 1. The circuit may be divided into three functional sections as shown in the block diagram.

Section I (Fig. 2). It comprises a ste-
reo head preamplifier, a function selector, and an FM transmitter. The preamplifier is built around IC LA3161. The outputs from 200-ohm stereo R/P (record/ play) head are connected to the left and right input pins 1 and 8 of LA3161 preamplifier. A 9V regulated power supply, obtained from the voltage regulator built around transistor T1, is used for the preamplifier. The outputs of this preamplifier are routed to the function selector configured around two CD4066 (quad bipolar analogue switches) and an HEF 4017 (decade counter).

When any control input pin ($5,6,12$,

Fig. 1: Functional block diagram of stereo cassette player

Fig. 2: Preamplifier and function selector and FM TX (Section I)

Fig. 3: Internal schematic diagram of CD4066 switcher IC
and 13) of CD4066, as shown in Fig. 3, is made high, it can switch AC and/or DC signals between its corresponding output pins (3-4, 89, 10-11, and 1-2 respectively) in both direc-
tions. In other words, it acts like an analogue switch which can be turned on or off by making its input control pin high or low. A single IC contains four such switches/sections (A, B, C, and D). The control inputs of the two ICS (CD4066) are derived from the decade counter IC (HEF4017). Only four outputs of this IC (Q0 through Q3) are used and the fifth output Q4 (pin 10) is connected to the reset pin (pin 15) via diode D1.

When power is turned on, the output Q0 (pin 3) of this ic will be high. In this condition any audio signal fed to the 'radio I / P^{\prime} terminal reaches the output. If desired, the audio output from a radio

Fig. 4: Simplified schematic diagram of tone and sound mode control (left channel)

Fig. 5: Tone and sound mode control (Section II)
nals from the output of the preamplifier reach the output terminals of the circuit. At the same time, a 9 V regulated power supply to the preamplifier is switched on through transistor T1. When Q2 (pin 4) goes high, any audio signals applied to the auxiliary I/P terminals (Aux. I/P (L) and Aux. $I / P(R)$) reach the output terminals. When Q3 (pin 7) goes high, the power to both the FM transmitter and preamplifier is switched on and the signals from the preamplifier appear at the base of transistor T3 (BF494) which, in association with some passive components, forms an FM transmitter. The details of coil L1 are included in the parts list. The frequency of this transmitter falls between 88 and 108 MHz .

The frequency can be slightly varied by adjusting trimmer capacitor VC1. The transmitted signals can be received on any FM receiver working in $88-108 \mathrm{MHz}$ range. LEDs D2 through D5 are bilateral LEDS which are used to display the selected function.

Section II. This section employs a JFET dual operational amplifier LF353 whose gain for different audio frequencies is controlled by the corresponding potentiometer settings (VR3 and VR6 for bass, VR4 and VR5 for treble for left and right channels respectively) and, additionally, by sound mode selector switch S2. The simplified circuit diagram for left channel is shown in Fig. 4, while the complete schematic circuit diagram is shown in Fig. 5.

In the simplified diagram, the function of decade counter ic (HEF 4017) and bipolar analogue switcher ICs (CD4066) are replaced by a simple switch, SW. The output of preamplifier (section I) is applied as input to the inverting terminal of op-amp IC8 and at the output we obtain a 180° phase shifted amplified signal. Potentiometers VR3 and VR4 are used to control low frequencies (bass) and high frequencies (treble) respectively.

In the normal mode (Q0 output of IC7 high), pole-P of switch SW is in contact with terminals 1 and 2 simultaneously. In this condition, normal gain is achieved for both high and low frequencies as per settings of

VR3 and VR4. But the midrange frequency components get attenuated due to capacitor C41 ($0.047 \mu \mathrm{~F})$.

In the hi-fi mode (Q1 output of IC7 high), pole-P of the switch is in contact with terminal 1 . In this position, normal gain is achieved for entire audio frequency range (since capacitor C41 is disconnected from the feedback path).

When pole-P of switch sw is in position 2 (Q2 output of IC7 high), the attenuation of mid-rangefrequency components is reestablished and also the gain of the amplifier for very low frequencies increases (since an additional feedback resistance of 100k (R25) is introduced in the feedback loop). This is the low-frequency boost mode.

When pole-P is in con-

Fig. 6: Preamplifier, audio level indicator, and power supply (Section III)

PARTS LIST

Semiconductors:	
IC1	- LA3161 stereo preamplifier
IC2,IC3,IC5,IC6	- CD4066B quad bilateral analogue switch
IC7,IC4	- HEF4017B decade counter
IC8	- LF353 JFET input dual op-amp
IC9	- TA7230 stereo power amplifier
IC10	- KA2281 stereo level indicator
T1	- 2SC1815 npn transistor
T2	- CL100 npn transistor
T3	- BF494 npn transistor
D1,D12,D13,	
D24 D25,D9	- 1N4001 rectifier diode
D2,D3,D4,D5	- Bilateral coloured LEDs
D6-D8,D14-D23	- Coloured LED
D10,D11	- 1N5408 rectifier diode
D26,D27	- 9.1V zener
Resistors (all $1 / 4 \mathrm{~W}, \pm 5 \%$ metal carbon film, unless stated otherwise)	
R1,R6,R10	- 100-ohm
R2,R7	- 7.5-kilo-ohm
R3,R8,R22,R23,	
R28,R37,R39,R40-100-kilo-ohm	
R4,R9,R11,	
R26,R35	- 10-kilo-ohm
R5	- 150-ohm
R12,R13	- 1.2-kilo-ohm
R14-R21,R51-R60- 1-kilo-ohm	
R24,R27,R33,R30	
R31,R36,R38	- 4.7-kilo-ohm

R25,R32,R29,	
R34 R41,R42	- 2.2-kilo-ohm
R43,R44	- 1-ohm
R45-R50	- 33-kilo-ohm
R61	- 680-ohm
R62	- 330-ohm,0.5W
VR1-VR3,VR6	- 47-kilo-ohm linear potmeter
VR4,VR5	- 100-kilo-ohm linear potmeter
VR7	- 220-kilo-ohm linear potmeter
VR8,VR9	- 47-kilo-ohm log potmeter
Capacitors:	
C1,C5,C17,C27-C30,	
C32,C47,C59,C60-0.1 ${ }^{\text {F }}$ ceramic disc	
C2,C4, C24	- 100 $\mu \mathrm{F}, 25 \mathrm{~V}$ electrolytic
C3,C11,C26	- $22 n \mathrm{~F}$ ceramic disc
C6,C16,C22,C23	
C34,C36, C22,	
C23,C52,C53	- 1nF ceramic disc
C7,C15,C35,C37	
C49,C50, C10,	
C12,C51,C54	- 10رF, 25V electrolytic
C8,C13, C55,	
C56,C57	- $47 \mu \mathrm{~F}, 25 \mathrm{~V}$
C9,C14	- 15nF polyester
C18	- 100pF ceramic disc
C19	- 22pF ceramic disc
C20	- 10pF ceramic disc
C21	- 68pF ceramic disc
C25	- $1 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic
C31,C33,C46,C48-2.2 ${ }^{\text {F }}$, 25V electrolytic	

C38,C41,C43,C45-0.047 $\mu \mathrm{F}$ polyester	
C39,C42	- 2.2nF polyester
C40,C44	- 6.2nF polyester
C58,C61	- $470 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic
C62	- 2200んF electrolytic
C63-C66	- $4.7 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic
C67,C69	- $1000 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic
C68,C70	- $4700 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic
VC1	- 8-25pF trimmer
Miscellaneous:	
L1	- $5 \mathrm{~T}, 22$ SWG, 5 mm dia air core
L2	- 250T, 18 SWG over a ferrite rod
X1	- 230V AC primary to 12-012V, 2A sec. transformer
S1,S2	- Push-to-on tactile switch - Tape drive mechanism complete with 200-ohm R/P stereo head, leaf switch, and 12V DC, 2400 rpm motor - Telescopic antenna
LS1,LS2	- 4-ohm, 8W, 9cm diameter woofers with piezoelectric tweeter - Readymade FM/AM radio reciever kit - Cabinet - Shielded cable - Heat sink and other hardware items

Fig. 7. Actual-size, single-sided PCB for stereo cassette player

Fig. 8. Component layout for the PCB
tact with terminal 3 (Q3 output of IC7 high), normal gain is provided for the high-frequency components (treble) and higher gain is available for a wide range of low frequencies (including some midrange frequencies). This is termed as the X-BAS mode. The gain of the amplifier for different frequencies, in each of the above-mentioned modes, is al so dependent on VR3 and VR4 potmeter settings.

In the actual circuit diagram, the bipolar analogue switcher (CD4066) replaces switch SW. The LEDs D6, D7, and D8 are used to represent the sound modes-low-boost, hi-fi, and X-BAS repsectively. Switch S2 is used to select variouse sound modes. At power on, Q0 (pin 3) of IC7 is high and therefore normal sound mode is on.

Section III (Fig. 6). This section comprises an audio power amplifier, a 12 V dual power supply, and an audio level indicator. The power amplifier used is the popular IC-TA7230, which delivers up to 7-watt (RMS) power per channel into a 4-ohm load. This IC has in-built short circuit protection and over-temperature cutoff. A suitableheat sink must be connected
to the IC to prevent thermal run-away. Potmeters VR8 and VR9 are volume controls for left and right channels respectively, while VR7 is the balance control.

A dual power supply is used for the circuit. The +12 V section uses a π filter with capacitors in the parallel arms and an inductor in the series arm. However, for the -12 V supply, the inductor of the series arm (as used for +12 V supply) is replaced by a resistor. Filters are provided to reduce the ripple factor and thereby reduce hum (noise). Please refer inductor details in parts list.

The audio level indicator is built around IC KA2281. LEDs D14 through D23 are connected at its outputs to show the audio level of each channel in five steps. The input to this audio level indicator is derived from the output of the power amplifier. The gain of this level indicator can be varied by changing the values of resistors R49 and R50.

Assembly

The complete circuit, with the exception of the audio level indicator, can be as-
sembled on a single PCB. A separate PCB is used for the audio level indicator and for mounting LEDs (D2 through D8). Single-sided, actual-size PCB for the complete circuit is given in Fig. 7. The component layout for the PCB is shown in Fig. 8.

Use sockets for all ICs except IC1 and IC9. Shielded wires must be used for connections to stereo head and all potentiometers. The PCB must be mounted away from power transformer and DC motor.

Inductor L2 should also be placed away from the power transformer. If inductor $L 2$ is difficult to procure or fabricate, it may be substituted with a 5-ohm, 5W wire-wound resistor.

A suitable cassette drive mechanism and cabinet may be used to assemble the stereo cassette player. Readymade cabinets and cassette mechanisms are available in the market.

Adjust potmeters VR1 and VR2 for minimum distortion at higher volume level. Use separate aerials for FM transmitter and FM receiver.

CIRCUIT IDEAS

BASS AND TREBLE FOR STEREO SISTEM

VIVEK SHUKLA

Modern audio frequency amplifiers provide flat frequency response over the whole audio range from 16 Hz to 20 kHz . To get faithful reproduction of sound we need depth of sound, which is provided by bass (low notes). Hence low-frequency notes should be amplified more than the high-frequency notes (treble). To cater to the individual taste, and also to offset the effect of noise present with the signal, provision of bass and treble controls is made. The combined control is referred to as tone control.

The circuit for bass and treble control shown in the figure is quite simple and cost-effective. This circuit is designed to be adopted for any stereo system. Here, the power supply is 12 -volt DC, which may be tapped from the power supply of stereo system itself. For the sake of clarity, the figure here shows only one channel (the circuit for the other channel being identical). The input for the circuit is taken from the output of preamplifier stage for the left as well as right channel of the stereo system

Potentiometer VR1 (10-kilo-ohm) in series with capacitor C4 forms the treble
control. When the slider of potentiometer VR1 is at the lower end, minimum treble signal develops across the load. The lowest point is referred to as treble cut. As the slider is moved upward, more and more treble signal is picked up. The highest point is referred to as treble boost.

Bass would be cut if capacitive reac-

Hence, bass has nil attenuation, and it is called bass boost. When the slider is at the lowest end, capacitor C1 is effectively in parallel with potentiometer VR2. In this position, bass will have maximum attenuation, producing bass cut.

Bass boost and bass cut are effective by $\pm 15 \mathrm{~dB}$ at 16 Hz , compared to the output at 1 kHz . Treble boost and treble cut are also effective by the same amount at 20 kHz , compared to the value at 10 kHz .

After assembling the circuit, we may check the performance of the bass and treble sections as follows:

1. Set the slider of the potentiometers at their mid-positions.
2. Turn-on the stereo system.
3. Set the volume control of stereo

tance in series with the signal increases. Thus, when the slider of potentiometer VR2 is at the upper end, capacitor C1 is shorted and the signal goes directly to the next stage, bypassing capacitor C 1 .
system at mid-level.
4. Set the slider at the position of optimum sound effect.

This circuit can be easily assembled using a general-purpose PCB.

PROTECTION FOR YOUR EIECTRICAI APPLIANCES

MALAY BANERJEE

Here is a very low-cost circuit to save your electrically operated appliances, such as TV, tape recorder, refrigerator, and other instruments during sudden tripping and resumption of mains supply. Appliances like refrigerators and air-conditioners are more prone
to damage due to such conditions.
The simple circuit given here switches off the mains supply to the load as soon as the power trips. The supply can be resumed only by manual intervention. Thus, the supply may be switched on only after it has stabilised.

The circuit comprises a step-down transformer followed by a full-wave rectifier and smoothing capacitor C 1 which acts as a supply source for relay RL1. Initially, when the circuit is switched on, the power supply path to the step-down transformer X1 as well as the load is incomplete, as the relay is in de-energised state. To energise the relay, press switch S1 for a short duration. This completes the path for the supply to transformer X1 as also the load via closed contacts of switch S1. Meanwhile, the supply to relay becomes available and it gets energised to provide a parallel path for the supply to the transformer as well as the load.

If there is any interruption in the
power supply, the supply to the transformer is not available and the relay deenergises. Thus, once the supply is interrupted even for a brief period, the relay is de-energised and you have to press switch S1 momentarily (when the supply resumes) to make it available to the load.

Very-short-duration (say, 1 to 5 milliseconds) interruptions or fluctuations will not affect the circuit because of presence of large-value capacitor which has to discharge via the relay coil. Thus the circuit provides suitable safety against erratic power supply conditions.

DICITAL WATER LEVEL METER

K. UDHAYA KUMARAN, VU3GTH

which is applied to pin 1 of IC1. It comprises a positive pulse of variable duration (0.5 second to 3 seconds, depending upon the water level in the tank) followed by 4 -second low level.

Thus, during positive duration of timing pulse at pin 1 of $I C 1$, the frequency counter is allowed to count the number of negative going pulses which are continuously available at its pin 2. At the same time the pnp transistor T1 remains cut-off due to the positive vol tage at its base, and
this frequency counter needs two types of inputs. One of the these is a continuous 30 Hz dock (approx.), which is applied to pin 2 of IC1. The other is a timing pulse, the OHT quite precisely. The circuit is specially suited for use in apartments, hostels, hotels, etc, where many taps are connected to one OHT. In such cases, if someone forgets to close the tap, this circuit would alert the operator well in time.

Normally, for multi water level readings, one has to use complicated circuits employing multi-core wires from the OHT to the circuit. This circuit does away with such an arrangement and uses just a 2-core cable to monitor various water levels. Fig. 2. shows various water levels and the corresponding readings on 7-sement displays.

IC1andIC2shown in Fig. 1 are CD4033 (decade up counter cum 7-segment decoder) which form a two-digit frequency counter. The CK pin 1 and CE pin 2 of IC1 are used in such a way that the counter advances when pin 1 is held high and pin 2 undergoes a high-to-low transition.

For water level reading,

so the displays (DIS.1 and DIS.2) remain off. However, at the end of positive pulse at pin 1 of IC1 (and base of transistor T1), the frequency counter is latched. During the following 4-second low level period, transistor T1 conducts and displays DIS. 1 and DIS. 2 show the current count. At beginning of the next positive timing pulse the frequency counter resets (as the reset pin 15 of IC1 and IC2 receives a differentiated positive going pulse via capacitor C1) and starts counting afresh.

Thus, this digital water level meter shows water level reading for four-second duration and then goes off for a variable period of 0.5 second to 3 seconds. Thereafter the cycle repeats. This type of display technique is very useful, because if there is ripple in water, we shall otherwise observe rapid fluctuations in level readings, and shall not get a correct idea of the
actual level.
Timer IC4is used as a free-running astablemultivibrator which generates continuous 30 Hz clock pulses with 52 per cent duty cycle. The output of IC4 is available at its pin 3, which is connected to pin 2 of IC1.

The other timer, IC3, is used as timing pulse generator wherein we have independent control over high and low duration (duty cycle) of the timing pulses available at its output pin 3. The different duration of high and low periods of the timing pulses are achieved because the charging and discharging paths for the timing capacitor C2 differ. The charging path of capacitor C2 consists of resistor R19, diode D1, and potmeters VR1 for OHT (or VR2 for sump tank, depending upon the position of slide switch S1) and VR3. However, the discharge path of capacitor C2 is via diode D2 and variable resistor VR4.

By adjusting preset VR4, the low-duration pulse period (4 seconds) can be set. The low-pulse duration should invariably be greater than 3 seconds.

Potmeter VR1 (or VR2), a linear wirewound pot, is fitted in such a way in the overhead tank (or sump tank) that when water level is minimum, the value of VR1 $=2$ kilo-ohm. When water level in the tank is maximum, the in-circuit value of potmeter VR1 increases to 340-kilo-ohm (approximately). This is achieved by onethird movement of pot shaft. The change in resistance of VR1 results in the change in charging period of capacitor C2. Thus,
depending upon the level of water in the tank, the in-circuit value of VR1 (or VR2) resistance changes the charging time of capacitor C2 and so also the duration of positive pulse period of IC3 from 0.5 sec ond to 3 seconds.

Adjustment of presets for achieving the desired accuracy of count can be accomplished, without using any frequency counter, by using the following procedure (which was adopted by the author during calibration of his prototype):

1. First adjust the values: VR1 (or VR2) $=2$ kilo-ohm, VR3 $=64$ kilo-ohm, VR4 $=90$ kilo-ohm, VR5 $=23.5$ kilo-ohm.
2. Now switch on the circuit. The 7segment DIS. 1 and DIS. 2 blink. If necessary, adjust VR3 such that the display goes 'on' for 4-second period.
3. If display readout is 15 , increase value of pot VR1 from 2-kilo-ohm to 340-kilo-ohm. Now, the display should show 90. If there is a difference in the displayed count, slightly adjust presets VR5 andVR3 in such a way that when VR1 is 2-kilo-ohm the display readout is 15 , and when VR1 is 340 -kilo-ohm the display readout is 90 .
4. If 15 - to 90 -count display is achieved with less than one-third movement of pot shaft, increase the value of VR5 slightly. If 15 - to 90 -count display is not achieved with one-third movement of pot shaft, decrease value of VR5.

If you need this digital water level meter to monitor the levels of water in the overhead as well as the sump tanks, it can be done by moving DPDT slide switch to down (DN) position. The indication of the position selected is provided by different colour LEDs (refer Figs 1 and 2) or by using a single bi-colour LED. To monitor water level in more than two tanks, one may use a similar arrangement in conjunction with a rotary switch.

For timing capacitors C2 and C4 use tantalum capacitors for better stability.

UNIVERSAL HIGH-RESISTANCE VOLTMETER
 YOGESH KATARIA

The full-scale deflection of the universal high-input-resistance voltmeter circuit shown in the figure
depends on the function switch position as follows:
(a) 5V DC on position 1
(b) 5 V AC rms in position 2
(c) 5 V peak AC in position 3
(d) 5V AC peak-to-peak in position 4

The circuit is basically a voltage-to-
TABLE I
Position 1 of Function Switch

$\mathbf{E}_{\text {dc }}$ input	Meter Current
5.00 V	$44 \mu \mathrm{~A}$
4.00 V	$34 \mu \mathrm{~A}$
3.00 V	$24 \mu \mathrm{~A}$
2.00 V	$14 \mu \mathrm{~A}$
1.00 V	$4 \mu \mathrm{~A}$

current converter. The design procedure is as follows:

Calculate $\mathrm{R}_{\boldsymbol{l}}$ according to the application from one of the following equations:
(a) DC voltmeter: $\mathrm{R}_{\mathrm{IA}}=$ full-scale $E_{D C} l_{\mathrm{FS}}$
(b) RMS AC voltmeter (sine wave only): $\mathrm{R}_{\mathrm{IB}}=0.9$ full-scale $\mathrm{E}_{\text {RMS }} / \mathrm{I}_{\mathrm{FS}}$
(c) Peak reading voltmeter (sine wave only): $R_{I C}=0.636$ full-scale $E_{P K} / I_{\text {FS }}$
(d) Peak-to-peak AC voltmeter (sine wave only): $R_{I D}=0.318$ full-scale $E_{\text {PK-TO-PK }} / I_{\text {FS }}$

The term $I_{\text {FS }}$ in the above equations refers to meter's fullscale deflection current rating in amperes.

It must be noted that neither meter resistance nor diode voltage drops affects meter current.

Note: The results obtained during practical testing of the circuit in EFY lab are tabulated in Tables I through IV.

A high-input-resistance opamp, a bridge rectifier, a microammeter, and a few other discrete components are all that are required to realise this versatile circuit. This circuit can be used for measurement of DC, AC RMS, AC peak, or AC peak-to-peak voltage by simply changing the value of the resistor connected between the inverting input terminal of the op-amp and ground. The voltage to be measured is connected to non-invert-

TABLE II	
Position 2 of Function Switch	
$\mathbf{E}_{\text {rms }}$ input	Meter Current
5 V	$46 \mu \mathrm{~A}$
4 V	$36 \mu \mathrm{~A}$
3 V	$26 \mu \mathrm{~A}$
2 V	$18 \mu \mathrm{~A}$
IV	$10 \mu \mathrm{~A}$

TABLE III
Position 3 of Function Switch

$\mathbf{E}_{\text {pk }}$ input	Meter Current
5 V peak	$46 \mu \mathrm{~A}$
4 V peak	$36 \mu \mathrm{~A}$
3V peak	$26 \mu \mathrm{~A}$
2V peak	$16 \mu \mathrm{~A}$
IV peak	$6 \mu \mathrm{~A}$

TABLE IV	
Position 4 of Function Switch	
E Pk-To-pk	Meter Current
5V peak to peak	$46 \mu \mathrm{~A}$
4V peak to peak	$36 \mu \mathrm{~A}$
3V peak to peak	$26 \mu \mathrm{~A}$
2V peak to peak	$16 \mu \mathrm{~A}$
1V peak to peak	$7 \mu \mathrm{~A}$

inginput of theqpamp.

TRIAC/TRANSISTOR CHECKER

PRAVEEN SHANKER

Here is a very simple circuit which can be used for testing of SCRs as well as triacs. The circuit could even be used for checking of pnp and npn transistors.

The circuit works on 3V DC, derived using a zener diode in conjunction with a step-down transformer and rectifier arrangement, as shown in the figure. Alternatively, one may power the circuit using two pencil cells.

For testing an SCR, insert it in the socket with terminals inserted in proper slots. Slide switch S3 to 'on' position (towards ' a ') and press switch S1 momentarily. The LED would glow and keep glowing until switch S2 is pressed or mains supply to step-down transformer is interrupted for a short duration using switch S4. This would indicate that the SCR under test is serviceable.

With switch S3 in 'off' position (towards 'b'), you may connect a

Fig. 2

$$
2 \quad \text { (a) }
$$

(b)

milliammeter or a multimeter to monitor the current flowing through the SCR. If the SCR is 'no good,' the LED would never glow. If the SCR is faulty (leaky), the LED would glow by itself. In other words, if the LED glows only on pressing switch S1 momentarily and goes off on pressing

MT2, i.e. connect MT1 to the negative and MT2 to the positive side. For a good working triac, S2 would not initiate conduction in the triac and the LED would remain off. On the other hand, momentary depression of S5 would initiate conduction of the triac and LED1 would glow.

The indication of a leaky triac is similar to that of an SCR. If, during both the above-mentioned tests, the LED lights up, only then the triac is good.

Before connecting any ScR/triac in the circuit, please check its anode/MT1's connection with the case. (Note: A triac is
actually two SCRs connected back to back. The first accepts positive pulse for conduction while the second accepts negative pulse for conduction.)

You can also check transistors with this circuit by introducing a resistor (about 1 kilo-ohm) between the junction of switches S1 and S5 and point G. The collector of npn or emitter of pnp transistor is to be connected to positive (point A), while emitter of an npn and collector of a pnp transistor is to be connected to negative (point K). The base in both cases is to be connected to point G.

Fig. 2indicatestheconventional arrent directionandforwardbiasingconditionfor pnpandnpn transistors. Ifthetransistorunder testisofnpntype, on pressingS1, theLED glows, andon releasingor liftingthefinger, itgoes off, indicatingthatthetransistor isgood. For pnptransistor, theLEDglowson pressingswitchS5and goesoff when itisreleased. Thisindi catesthat thetransistor under testisgood. A leakyor short-araitedSCR or transistor would beindicated by a permanent glow of theLED by itself,i.e without pressingswitchS1orS5.

results in increase of frequency, instead of decrease. When the value of variable re sistor is zero, frequency is given by
$\mathrm{f}=\frac{1.44}{(\mathrm{R} 1+2 \mathrm{R} 2) \mathrm{C1}}$
Now, when the value of variable resistor VR1 is increased, the frequency increases from the value of ' f ' as determined from above formula (with VR1=0).

Lab note: The circuit has been practically verified with two different values of timing capacitor C1 and the results obtained are tabulated in Table I.

RESONANCE TYPE L-C METER

ARUP KUMAR SEN

The voltage developed across a capacitor or an inductor in a seriesresonant LCR circuit reaches its maximum value at resonance. This fact can be used to find the value of an unknown inductance or a capacitance. The present circuit is based on this very principle and it may be used to measure an inductance of even less than $1 \mu \mathrm{H}$, or a capacitance of the order of a few pico Farads. The quality factor ' Q ' of the circuit can be measured if the applied RF voltage and the resonant voltage, developed across an inductor or a capacitor, are measured with the help of a sensitive RF volt-

Author's prototype
prising a known value of inductance (called work-coil) and a standard variable calibrated capacitor. The resonance condition is detected by a peak detector which detects the peak voltage developed across
varying the value of the standard calibrated capacitor. Since frequency of the RF source is the same in both the cases (say f MHz), the unknown value of inductance of the coil under test, L_{x} (in micro henries), can be calculated using the following relation:

$$
\begin{equation*}
L_{X}=\frac{\left(C_{A}-C_{B}\right) \times 10^{6}}{(2 \pi f)^{2} C_{A} C_{B}} \quad \mu H \tag{1}
\end{equation*}
$$

When inductance L_{w} (in micro Henries) of the work-coil is known, the value of unknown inductor, L_{x}, can also be calculated using the relation:

$$
\begin{equation*}
L_{X}=\frac{L_{W} x\left(C_{A} \cdot C_{B}\right)}{C_{B}} \quad \mu H \tag{2}
\end{equation*}
$$

Alternatively, the coil under test can be connected directly to the circuit, without any work-coil in series. In this case the inductance is given by the relation:

$$
\begin{equation*}
L_{X}=\frac{10^{6}}{(2 \pi f)^{2} C} \mu H \tag{3}
\end{equation*}
$$

Fig. 1: Schematic diagram of the resonance L-C meter

Fig. 2: 9V power supply
meter, since Q is simply the ratio of these two voltages.

Methodology

Signal from a variable-frequency RF source is applied to the coil under test, which is in series with a resonating network com-
the capacitor at resonance and gives a visual indication of the same. An unknown inductance is measured in two steps as follows:

1. Thecircuit is tuned to resonance, using calibrated tuning capacitor, with the work-coil in the circuit. The in-circuit value of calibrated capacitor is noted. Let this value be $_{A}$ in pico Farads.
2. The unknown inductance is brought in series with the work-coil, and the circuit is retuned to resonance using the calibrated capacitor. Let the new in-circuit value of the calibrated capacitor be C_{B} pico Farads.

In both the cases tuning is done by
where f is in MHz and C is in pF .
The value of a small unknown capacitor, C_{x}, can also be measured similarly in the following two steps:

1. A resonant condition is achieved by varying the standard capacitor against a particular combination of a work-coil and a crystal (forming part of crystal oscillator). Let the in-circuit value of tuning capacitor be $\mathrm{C}_{\mathrm{A}} \mathrm{pF}$.
2. The unknown capacitor is connected in parallel to the standard capacitor, and decreasing the value of the standard tuning capacitor brings the resonant condition back. Let this new in-circuit value of the tuning capacitor be $\mathrm{C}_{\mathrm{B}} \mathrm{pF}$.

The value of the unknown capacitor C_{x} would bethe difference of these two values of the standard variable capacitor, i.e.

$$
C_{X}=\left(C_{A}-C_{B}\right) p F
$$

(4)

Fig. 3: Single-layer coil
The formulae (1) to (3) are based on the assumption that there would be no mutual inductive coupling between the work-coil and the coil under test, and no stray capacitance exists to affect the resonating network. The stray capacitance, if any, is to be determined and added to both C_{A} and C_{B} to get better accuracy. The stray capacitance would have no effect upon the results obtained using the method pertaining to formula (4) above, as it would be cancelled out by the subtraction procedure.

Description

In the present circuit shown in Fig. 1, the RF signal source is formed using a crystal-controlled Colpitt's oscillator, a buffer amplifier, and a power amplifier.

The frequency of the RF source may be varied from 1.8 MHz to 14.3 MHz by connecting different crystals of known resonant frequencies. (Refer parts list.)

Transistor T1, along with capacitors C3 and C4, and crystal Xtal, forms the Colpitts oscillator. The crystal operates near its parallel resonant frequency. Necessary positive feedback is obtained via capacitors C3 and C4 with a feedback factor $\beta=(C 3+C 4) / C 3$. Since the voltage gain A of a common-collector stage is less than unity, β is madeslightly greater than unity to sustain oscillation. (Loop gain $A \beta$ becomes 1 in steady-state condition.) The output of the oscillator is taken from emitter of transistor T 1 and is fed to the power amplifier transistor T3, through a buffer stage. Field-effect transistor T2, configured as a common drain amplifier, serves as a buffer amplifier. Due to the high input impedance of the source foll ower, loading on the oscillator is very low. Moreover, any variation in the output load impedance has no pulling effect on the oscillator frequency. The use of common collector configuration for the oscillator and the power amplifier stages provides a better high-frequency response.

The peak voltage at resonance is indicated by the intensity of LED D5 connected to the collector terminal of transistor T4. A milliammeter (M1) may also be used in series with the LED to get sharper tuning. The base of transistor T4 is driven by the average DC voltage developed over a complete cyde, at the output of a halfbridge rectifier. The rectifier is formed with two

Fig. 4: Actual-size, single-sided PCB layout for the circuit

PARTS LIST	
Semiconductors:	
IC1	- 7809, 3-terminal +9V regulator
T1, T3	- BF194B npn transistor
T2	- BFW10 field-effect transistor
T4, T5	- BC147 npn transistor
D1-D4	- 1N34/OA79 point-contact signal diode
D5, D6	- LED, 5mm
D7, D8	- 1N4002 rectifier diode
Resistors (all $1 / 4 \mathrm{~W}, \pm 5 \%$ metal carbon film, unless stated otherwise)	
R1, R7	- 33-kilo-ohm
R2	- 22-kilo-ohm
R3	- 2.7-kilo-ohm
R4	- 330-ohm
R5	- 1-meg-ohm
R6	- 4.7-kilo-ohm
R8	- 620-ohm
R9, R10	- 1-kilo-ohm
VR1, VR2	- 470-kilo-ohm, variable (linear)
Capacitors:	
C1, C9	- 220uF, 25V electrolytic
C2, C11	- $0.2 \mu \mathrm{~F}$ ceramic disc
	- 100pF polyester
C4-C8, C10	- 820pF polyester
C12	- $1000 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic
$\mathrm{C}_{\text {T }}$	- 10pF - 280pF 2J type
	- OpF - 10pF trimmer
Miscel laneous:	
	- 230 V AC primary to $12 \mathrm{~V}-0$ $12 \mathrm{~V}, 250 \mathrm{~mA}$ secondary transformer
LW	- Work-coil (refer Table I)
M1, M2	- DC mA meter, 1 mA F.S.D.
Xtal	$\begin{aligned} & -1.8,3.5,6,10,12,14.3 \mathrm{MHz} \\ & \text { quartz crystal } \end{aligned}$
SW1, SW2,	
SW4	- ON/OFF switch
SW3	- SPDT switch
	- BNC and SIP connectors
	- Snap connectors for coils (male/female)

point-contact RF signal diodes (1N34), D1 and D2. The input signal to the bridge is the voltage developed across the parallel combination of variable capacitors C_{T} (calibrated tuning capacitor, such as the one used in radio work with $\mathrm{C}_{\text {max }} \cong 280 \mathrm{pF}$ for 2J) and C_{F} (calibrated fine tuning capacitor 0-10 pF). Diode D1 conducts only during positive half cycle of the input signal and causes a base current proportional to the average value of the signal voltage to flow through the B-E (base-emitter) junction of transistor T4. On the other hand, diode D2 conducts heavily during negative half cycle and ensures that no reversebias leakage current flows through diode D1 via B-E junction. (The leakage current reduces the average voltage developed over a complete cycle, and hence, reduces the intensity of the LED.) If a second identical detector stage, built around transistor T 5 , is connected to the power amplifier output (emitter of tran-

TABLE II Construction Details of the Coils				
CoilRadius(r)(inch)Length(I) Turns(N) (inch)\quadL* (
L_{1}	10.4/16	5/16	20	7
	10.4/16	3/16	10	2.2
	0.25	1.25	77	25
	0.25	13/16	50	15
	10.4/16	2/16	4	0.4
${ }^{*} L_{x}=\frac{(r x N)^{2}}{9 r+101} \mu \mathrm{H}$				

TABLE III Determination of the Unknown I nductances by Two-frequency Method			
Coil	Peak response obtained at $\mathrm{f}_{\text {osc }}$ (MHz)	C(pF)	Results L($\mu \mathrm{H}$)
L_{1}	$\begin{aligned} & 3.5 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 265.2 \\ & 74.8 \\ & \hline \end{aligned}$	7.16
L_{2}	$\begin{aligned} & \hline 10 \\ & 14.3 \end{aligned}$	$\begin{aligned} & \hline 81.6 \\ & 20.4 \end{aligned}$	2.1
L_{3}	$\begin{aligned} & 1.8 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 265.2 \\ & 37.8 \end{aligned}$	25.2

sistor T3), it would show a dip in the intensity of the LED, as the resonant circuit is tuned to a peak.

Positive 9V supply, for the meter circuit, is derived using a conventional threeterminal fixed-voltage regulator IC 7809. AC mains voltage is stepped down by power transformer X1 from 230V AC to 12 V AC, which is then rectified to deliver the unregulated DC input to the regulator IC. (Refer Fig. 2.)

Construction

During construction, special care is to be exercised towards lead dressing. Any stray coupling from output to input through a stray capacitance, or an unwanted mutual inductance, may produce unwanted oscillations, which would hamper the reliability of the meter. Since stray capacitances play a very adverting role in a measurement, the same should be minimised by keeping the length of the connecting wires as short as possible.

The voltage developed across tuning capacitors (C_{T} and C_{F}) gradually increases as the frequency of oscillation is lowered. Hence, the input to the peak detector must be controlled accordingly for its safe operation. On the other hand, a reduction in the applied voltage to the peak detector reduces the current through the LED, which again enhances the sharp-

sponding to a particular frequency, and is given by the relation:

$$
\lambda=\frac{300}{\mathrm{f}} \text { metres, }
$$

where f is the frequency in MHz .

To wind a coil of required inductance, we may use the following equation:

$$
\begin{equation*}
\mathrm{L}=\frac{(\mathrm{r} . \ln .)^{2}}{9 \mathrm{r}+10 \mathrm{l}} \quad \mu \mathrm{H} \tag{6}
\end{equation*}
$$

Here, r is the mean radius, I is the length of the coil in inches, and n is the number of turns per inch of the selected SWG (as per wire tables). Initially, a table of I-vs-L is to be generated for a particular SWG, by putting various values of winding length I in equation (6) and finding the resultant L . The winding length, and consequently the number of turns required for the inductance calculated above, may then be found from this table. However, it is to be noted that formula (6) above could only help us to get close to the target inductance. The desired value is then achieved by adjusting its core, after connecting the coil in the circuit.

In equation (6) we may substitute N (total number of turns) for product I.n, if desired.

Methods

Some methods to find the value of inductance are given below:

1. Direct connection. Most of the unknown inductances may be measured by connecting them directly to the circuit and using the relation:
$L=\frac{10^{6}}{\left(2 \pi f^{2} . C\right.} \quad \mu \mathrm{H}$
Here, f is in $M H z$ and C is in $p F$. The steps to be followed are given below:
2. Switch on the RF generator (switch S1) with the coil under test connected to the circuit across points X1-X2.
3. Switch on S2 to apply RF power to the resonating network.
4. Rotate LED-intensity-control potmeter VR1 to obtain the maximum intensity of LED D5.
5. Tune calibrated tuning capacitor C_{T} (and/or fine-tuning calibrated capacitor C_{F}) for maximum intensity
of LED D5, or peak on the meter. The intensity of LED D5, or the deflection of the meter pointer, would be the maximum at resonance. If no peak is found, it might be due to low signal input to the peak detector. Gradually decrease the incircuit resistance value of potmeter VR1. If still no peak is found, it would mean that crystal frequency is not appropriate. Try with another crystal.
6. Note down the capacitance values from the dials of C_{T} and C_{F}. The total value of capacitance C is given by $C=$ $\mathrm{C}_{\mathrm{T}}+\mathrm{C}_{\mathrm{F}}+\mathrm{C}_{\text {Stray }}$.

The value of $\mathrm{C}_{\text {Stray }}$ may be in the range of $10-30 \mathrm{pF}$. If C_{T} is sufficiently high, $\mathrm{C}_{\text {Stray }}$ may be dropped from the calculation.
6. Calculate the value of L_{x} using equation (7).
2. Series connection. This includes following steps:

1. Insert a crystal in the crystal socket. Connect the coil under test across terminals X1-Y and a suitable work-coil across X2-Y (Tablel). Initially short X1-Y terminals using a small wire. Tune C_{T} and C_{F} to get a peak on LED D5 (or meter). Note the capacitance values from the dials of tuning capacitors C_{T} and C_{F}. Let this value be C_{A}. If no peak is obtained, try with another crystal and work-coil combination.
2. Remove the short across X1-Y and retune the circuit by rotating C_{T} (and/or C_{F}) towards lower capacitance value to establish the peak once again. Make a fine adjustment using C_{F}. Note the new positions on the dials. Let the new sum of C_{T} and C_{F} be C_{B}.
3. Calculate the value of the unknown inductance from Eqs (1) or (2) given above.
4. Two-frequency method. If a coil of inductance L_{x} gives peak responses on two different frequencies- f_{A} at C_{A} and f_{B} at C_{B} on tuning the dial-then L_{x} can be calculated from the formula given below:

$$
\begin{equation*}
L_{X}=\frac{1}{C_{A} \cdot C_{B}}\left(\frac{1}{\left(2 \pi f_{A}\right)^{2}}-\frac{1}{\left(2 \pi f_{B}\right)^{2}}\right) \tag{8}
\end{equation*}
$$

Method to find the value of capacitance. Follow the steps given below:

1. Tune the circuit to resonance
against a particular crystal and work-coil combination.
2. Read the capacitance values from the dials. Let the sum be $\mathrm{C}_{\mathrm{A}} \mathrm{pF}$.
3. Connect the capacitor under test in parallel with C_{T}.
4. Retune the circuit to get the peak back.
5. Note the new values of capacitance from the dials. Let the sum be $C_{B} \mathrm{pF}$.
6. Cal culate the unknown capacitance from the relation:
$C_{x}=\left(C_{A}-C_{B}\right) p F$
Method to determine an unknown frequency. Frequency of an unknown RF sinewave signal may be measured by following the steps given below:
7. Connect a suitable work-coil in the circuit.
8. Connect the RF signal source (with unknown frequency F_{x}) to the gate of buffer transistor T2, after disconnecting the crystal oscillator from it, with the help of switch S3.
9. Apply power to the meter by turning switch S1 'on'.
10. Apply RF power to the resonant circuit after turning switch S2 'on'.
11. Tune the resonant circuit to get a peak. If no peak is obtained, try with another work-coil.
12. Note the capacitance value from the dials of the tuning capacitors. Let the sum be C.
13. Calculate the frequency of the incoming RF signal using the following reIation:

$$
\mathrm{f}=\frac{1000}{\left.2 \pi \sqrt{\left(\mathrm{~L}_{\mathrm{w}}\right.} \mathrm{C}\right)} \mathrm{MHz}
$$

Here, L_{w} is in μH and C in $p F$.

Calibration

If a standard variable capacitor is not available, we may use, after proper calibration, a 2J type variable capacitor which is generally used for radio work. To calibrate the same, follow the steps given below:

1. Switch on the RF source with a 3.5

MHz crystal, $17 \mu \mathrm{H}$ work-coil, and a 2 J capacitor for C_{T}.
2. Rotate the tuning capacitor towards its maximum capacity (approx. 280 pF).
3. Tune by varying the slug of the coil to get a peak on the meter or LED.
4. If you require a resolution of 10 pF , connect a standard low-tolerance 10 pF capacitor in parallel with C_{T}. Instantly the circuit would be out of tune.
5. Rotate capacitor C_{T} to get back the peak again. Mark the new position of C_{T}. It would be $C_{\max }=10 \mathrm{pF}$.
6. Redo steps 4 and 5 to cover the entire angular span $\left(=180^{\circ}\right)$. Each time the new position of C_{T} would be 10 pF less than its previous value.

Limitations

While tuning with C_{T} to get a resonance, the LCR circuit may produce a peak voltage at the harmonic frequency of the crystal used, which would give misleading results. To avoid this situation, the positions of those harmonic frequencies on the dial of C_{T}, for a particular crystal and work-coil combination, should be spotted first, by rotating the capacitor over its full swing.

During tuning, if a conductive body is brought near the resonant network of the variable capacitor, interference would be produced.

Results

Coils practically wound, using the formulae given in the article, and inductance practically determined, using two-frequency method and series connection method, are tabulated in Tables II, III, and IV respectively.

Power supply may be assembled separately on the PCB, which may be cut out from the main PCB. Variable tuning capacitors $\left(C_{T}\right.$ and $\left.C_{F}\right)$, snap connectors for coils (L_{w} and L_{x}), switches, LEDs, potmeters, etc may be mounted on front panel.

www.electronicsforu.com

ELECTROLYSIS-PROOF COMPLETE WATER-LEVEL SOLUTION
 LOKESH KUMATH

comprises a step-down transformer (with secondary voltage and current rating of $15 \mathrm{~V}-0-15 \mathrm{~V}, 1 \mathrm{~A}$ respectively), followed by a bridge rectifier, filter, and 12 -volt regulators [LM7812 for $+12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{cc}}\right)$ and LM7912 for -12V ($\left.\mathrm{V}_{\text {EE }}\right)$]. Capacitors C1C4, across rectifier diodes, and C8 and C10, across regulator output, function as noise eliminators. Diodes D5 and D6 are

0ne major problem in using water as a conducting medium arises due to the process of electrolysis, since the sensor probes used for level detection are in contact with water and they get deteriorated over a period of time. This degradation occurs due to the deposition of ions on the probes, which are liberated during the process of electrolysis. Thereby, the conductivity of the probes decreases gradually and results in the malfunctioning of the system. This can be avoided by energising the probes using an AC source instead of a DC source.

The circuit presented here incorporates the following features:

1. It monitors the reservoir (sump tank) on the ground floor and controls the pump motor by switching it 'on' when the sump tank level is sufficient and turning it 'off' when the water in the sump tank reaches a minimum level.
2. Emergency switching on/off of the pump motor manually is feasible.
3. The pump motor is operated only if the mains voltage is within safe limits. This increases the life of the motor.
4. It keeps track of the level in the overhead tank (OHT) and switches on/off the motor accordingly automatically.
5. It checks the proper working of the motor by sensing the water flow into the tank. The motor is switched 'on' and 'off' three times, with a delay of about 10 sec onds, and if water is not flowing into the overhead tank due to any reason, such as air-lock inside the pipe, it warns the user by audio-visual means.
6. It gives visual and audio indications of all the events listed above.
7. An audio indication is given while the motor is running.
8. The system is electrolysis-proof.

Description
The power supply section (Fig. 1). It

Fig. 2: Part circuit of complete water level solution (contd. from Fig. 1)
used as protection diodes.
The under- and over-voltage cutoff section (Fig. 1). It comprises a dual comparator, two pnp transistors, and a few other discrete components. This part of the circuit is meant to stop the motor in case of a low mains voltage (typi cally 180V to 190 V) or a voltage higher than a specified level (say 260 V to 270 V). The unregulated DC is sampled by means of a potential divider network comprising resistors R3 and R4. The sampled voltage is given to two comparators inside IC LM319. The reference voltages for these two comparators are set by presets VR1 and VR2. The outputs of both the comparators are ac-tive-low (normally high, until the low or high voltage limits are exceeded). That is, when the AC mains goes below (or rises above) the preset levels, the outputs of the comparators change to logic zero. The output of either comparator, when low, results in lighting up of the respective LED-D7 (for lower limit) and D8 (for upper limit) via transistors T1 and T2 (2N2907), which areswitching transistors.

The outputs from the comparators al so go to 8-input NAND gate IC7 (CD4068) to control the motor via transistor T7. All inputs to IC7 are high when all conditions required for running of the pump motor are fulfilled. When one or more conditions
are not met, the output of IC7 goes high to de-energise relay RL1 via transistor T7.

Bipolar squarewave generation (Fig. 1). One side of the secondary of transformer X1 is also connected to opamp IC10 ($\mu \mathrm{A} 741$), which is used here as a comparator to provide bipolar square wave (having positive and negative halves). It is not advised to directly connect the secondary output to the probe in the tanks because, if due to any reason the primary and secondary get shorted, there is a risk of shock, as the secondary would be directly connected to the probes immersed in water inside the tank. But if we use a comparator in between the secondary and probes, the IC would get open in case primary and secondary windings are short-circuited. For additional safety, fuses F2 and F3, both of 1A capacity, are connected to the output of secondary windings.

Pump motor fault-detection circuit (Figs 1 and 2). A sensor probe detects the flow of water. It is fixed just at the mouth of the inlet pipe, inside the overhead tank. When the motor is off (output 'G' of NAND gate IC7 is high), transistor T9 (2N222) is 'on' (saturated) and, therefore, capacitor C15 is short-circuited. It also pulls the clock input pin 3 of IC4(a) flip-flop to ground. Zener D30 ensures that
transistor T 9 does not conduct with logic 0 voltage (1 to 2 V) at its base.

When the motor is running (all the inputs to NAND gate IC7 are high), transistor T9 base is pulled to ground and thus capacitor C15 starts charging via resistor R16. The RC combination is selected [using the well-known charging formula $\left.V(t)=V_{\text {final }}\left(1-e^{t / R C}\right)\right]$ such that it takes about 15 seconds for the capacitor to reach $1 / 3$ Vcc, i.e. about 4 volts to clock flip-flop IC4(a) to toggle, taking its $\overline{\mathrm{Q}}$ pin low to stop the motor (via IC7, transistor T7, and relay RL1). However, if water starts flowing within 15 seconds after the starting of motor, transistor T8 would start conducting and discharge capacitor C15, not allowing it to charge, irrespective of the state of transistor T9. Thus capacitor C15 remains discharged.

But if water does not flow due to any reason, such as air lock or pump motor failure, IC4(a) toggles after about 15 seconds, which makes its $\overline{\mathrm{Q}}$ pin 2 low. As a result, the output of IC7 goes high and the motor stops. Simultaneously, capacitor C15 is discharged. At the instant $\overline{\mathrm{Q}}$ goes low, Q (pin 1) goes high and so a clock is applied to IC5 via resistor-capacitor combination of R18-C16, so that clock input pin 14 of IC5 goes high after about 10 seconds. As a result, pin 2 of IC5 goes

Fig. 3: Actual-size, single-sided PCB layout for the circuit shown in Figs 1 and 2

Fig. 4: Component layout for the PCB
high and resets IC4(a) to make $\overline{\mathrm{Q}}$ high again. This starts the motor again.

But if water still does not flow into the OHT this time, $\overline{\mathrm{Q}}$ of IC4(a) becomes low again to switch off the motor. Simultaneously, IC5 gets another clock pulse and IC4(a) is reset once again after 10
seconds to restart the motor. If this condition repeats for the third time, pin 7 of IC5 goes high, to reset it. The same output from pin 7 of IC5 functions as a clock pulse for IC4(b), to give a logic high signal to $\overline{\text { RESET }}$ pin 4 of IC9 (NE555), configured as astable multiviberator.

The output of IC9 is used to switch 'on' the speaker at the set frequency. The frequency (tone) can be set using preset VR4. The Q output of IC4(b) is also used to light up the 'Motor Fault' LED D27. This fault condition can be reset by pressing switch S2 to reset IC4(a) and IC4(b),

Fig. 5: Proposed front-panel layout
after taking appropriate remedial action such as filling the foot-valve of the motor with water or by removing the air-lock inside the pipe.

Reservoir/sump tank level detection (Fig. 2). To start the motor when the water level in the reservoir is sufficient (level B), and to stop the motor when the level falls below a particular level (level A), are the two functions performed by this section. IC6 (timer NE555) is configured here to function in the bistable mode of operation. When the water level is below the minimum level A, both pins 2 and 6 of IC6 are low. In this state, the output is high, as the internal R-S flipflop is in the set condition.

When water rises up to level A and above, but below level B, pin 2 is at high level. But in this state no change occurs at the output because both the inputs to the flip-flop are at logic zero, and so the initial condition remains at the output.

When water touches level B probe, pin 6 goes high and the output low. As a result, collector of transistor T10 goes high and the motor starts, if all other inputs of IC7 are also high. Thus, water level in the reservoir starts decreasing, and when it goes below level A, the output of IC6 goes high and the motor stops.

Capacitors C20 and C21 act as filter capacitors. The value of C21 is selected such that it takes about 10 seconds to reach $2 / 3$ Vcc potential at pin 6, thereby avoiding any erroneous start of the motor due to random fluctuations in the water level of the reservoir due to any reason. Resistors R22 and R23 are bleeder resistors for discharging these capacitors. Switches S3 and S4 are used to switch 'on' and switch 'off' the motor respectively, in case of any emergency.

Miscellaneous functions (Figs 1 and 2). Transistors T3 through T5 are used to drive LEDs D9 through D11, which indicate the level of water inside the overhead tank. The base of transistor T5 is also connected to $\overline{\text { RESET }}$ pin 4 of IC9 to sound an alarm (similar to that in case of
motor fault), indicating that the overhead tank has been filled completely. At this instant LED D11 is lit to indicate this condition, while during motor fault condition motor fault LED D27 is lit. Thus, by using the same alarm facility and two different LEDs, two different conditions are indicated. Thecollector of the same transistor T5 is connected to NAND gate IC7 to switch off the motor when the tank is filled up to its maximum level.

The ground pin of melody generator UM66 (IC8) is connected to the emitter of transistor T7. Thus, the melody IC is 'on' when the motor is running. The volume of this melody can be controlled by preset VR3.

Diode D23 connected across the relay is the 'snubber' diode to protect emitter junction of T7. Capacitor C25 is added to avoid chattering of the relay.

LS1 can be any 0.25 W -1W, 8-ohm speaker. RL1 should be a good-quality $12 \mathrm{~V}, 200$-ohm relay, with a contact rating of at least 10A. The combinations of ca-pacitor-resistor C19-R21 and C27-R32 form power-on reset circuits. Since the CMOS ICs are used here, the noise margin is quite high. The front-panel layout for the system is given in Fig. 5.

Precautions

1. The probes should be made of a material which is rust-proof, such as aluminium or brass.
2. Adjust presets VR1 and VR2 using an auto-transformer.
3. IC1 and IC2 should be provided with heat-sinks.
4. Level A of the reservoir should be such that the foot-valve is just under water.
5. The probes energised with AC (connected to output of IC10) should run up to the bottom of the OHT and sump tanks.
6. The water-flow-sensing probe should be installed well above the tankfull' level.
7. Remember that the 'low level' LED indicates that water is between the 'low level' and 'half level'. When both 'low level' and 'half level' LEDs are on, the water level is between 'half' and 'full level'.
8. The probes inserted deep, down to the bottom, should be completely uncovered up to the top position of the tank, and the different probes should be as close

	PARTS LIST
Semiconductors:	
IC1	- 7812, +12V regulator
IC2	- 7912,-12V regulator
IC3	- LM319 dual comparator
IC4	- CD4027 dual J K flip-flop
IC5	- CD4017 J ohnson ring
IC6, IC9	- NE555 timer
IC7	- CD4068, 8-input NAND gate
IC10	- μ A741 op-amp
IC8	- UM66 melody generator
T1, T2, T7	- 2N2907 pnp switching transistor
T3-T5,T8-T10-2N2222 npn switching	
T6	- SL100 npn transistor
D1-D6, D23	- 1N4007 rectifier diode
D7-D11,	
D27-D29	- LED, coloured
D12, D13,	
D24-D26 - 1N4148 switc	
D14,D15,D31 - 1N4001 rectifier diode	
D22, D30	3.1V zener diode
Resistors (all $1 / 4$ watt, $\pm 5 \%$ carbon film, unless stated otherwise):	
R1, R23 - ${ }^{\text {R }}$ (100 -kilo-ohm	
R3, R31 - 6.8-kilo-ohm	
R4, R19, R20,	
R24, R34,R35-2.7-kilo-ohmR5, R7, R17,	
R26-R28,R36-1-kilo-ohm	
R6, R8, R30	560-ohm
R9-R11, R29,	
	620-ohm
R12-R15, R21,R25, R32	
R18 - 270-kilo-ohm	
R22 - 82-kilo-ohm	
VR1-VR2 - 10-kilo-ohm, preset	
VR3, VR4	- 4.7-kilo-ohm, preset
Capacitors:	
C1-C4, C8, C10	
C22-C24,	
C28, C29	- $0.1 \mu \mathrm{~F}$ ceramic disc
C5, C6 - 1000 F , 25 V electrolytic	
C7, C9, C13,C16-C19, C21,	
C26, C27	- $100 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic
C11, C12,C20-10 ${ }^{\text {F }}$, 25 V electrolytic	
C14 - $22 \mathrm{LF}, 25 \mathrm{~V}$ electrolytic	
C15,C25,C30-470 ${ }^{\text {F, } 25 \mathrm{~V} \text { electrolytic }}$	
Miscel laneous:	
X1 - 230 V AC to $15 \mathrm{~V}-0-15 \mathrm{~V}, 1 \mathrm{l}$	
RL1	- Relay 12V, 200-ohm with con-
	tact rating $\geq 10 \mathrm{~A}$
	- IC bases
LS1	- Speaker, 8-ohm, 1W
	- Heat-sinks for IC1 and IC2
S1 - Mains on/off switc	
$\begin{array}{ll}\text { S1-S4 } & \text { - Single-pole } \\ \text { F1 } & -0.5 A \text { fuse }\end{array}$	
F2-F3	- 1A fuse
	- Sensing probes

as possible (but not too close to avoid any water droplets sticking across them) to have minimum water resistance.

A single-sided, actual-size PCB for the complete circuit of the project is given in Fig. 3, and a component layout for the same is given in Fig. 4.

CIRCUIT IDEAS

PENDULUM DISPLAY

K.P. VISWANATHAN

The circuit presented here can be used for producing eye-catching effects like 'pendulum' and 'dash-

The BCD outputs of IC2 are connected to IC3 (CD4028), which is a 1-of10 decoder. As per sequential BCD in-
through Triac10) via corresponding transistors (T1 through T10) to light up the bulbs connected to them.

Initially, when output 00 of IC3 goes high, the output of flip-flop formed by NOR gates N3 and N4 goes high, thus keeping pin 10 of IC2 at logic 1, and the counter counts up. Subsequently, when output 09 become high, the flip-flop is toggled and pin 10 of IC2 is pulled to ing light'. To and fro motion of a pendulum can be simulated by arranging ten bulbs in a curved fashion and lighting them up sequentially, first in one direction and then in the other, using this circuit. For pendulum effect, the frequency of oscillator should bequite low.

Similarly, one may create a dashing light effect by using 19 bulbs and connecting them in such a way that bulb number 1 and 19, 2 and 18, 3 and 17, so on are in parallel. For achieving the dashing light effect, the oscillator frequency should be comparatively high.

In this circuit NOR gates N 1 and N 2 form an oscillator whose period can be adjusted through potmeter VR1. Oscillator output is fed to dock pin 15 of IC2 (CD4029), which is a binary/BCD up/down counter. As long as pin 10 of IC2 is at logic 1, it counts up; when it changes to logic 0 , it
counts down. This changeover is explained below.

puts (up or down), outputs of IC3 go high and trigger the triacs (Triacl
logic 0 , and the counter starts counting down. The cyde repeats endlessly.

AUDIO LEVEL INDICATOR

LOKESH KUMATH

The audio level indicator described here is quite simple and utilises readily available ICs. The function of the circuit can be understood with reference to Fig. 2 which shows two concentric circles formed by red and green LEDs respectively.

When the audio level increases, the speed of the roulette (moving light ef-
fect in the circles) also increases. The lighting LEDs of one of the two circles would appear to move in clockwise direction, while the other circle's LEDs appear to move in anticlockwise direction. When no audio is available, the speed of these two roulettes appears to be constant.

Although the LEDs here are ar-
ranged in circular form and only two colours are used, a number of different combinations are possible. For example, one may have red and green LEDs arranged in two rows, one over the other. LEDs of one row may be made to appear moving from left to right and of the other in the opposite direction, i.e from right to left.

In the dircuit shown in Fig. 1, IC 555 is wired to operate in an astable mode as a voltage controlled oscillator (VCO). The only difference here is that pin 5 (which is a frequency controlling

The audio output is not taken directly from the output of the deck (across speaker terminals) because the output across speaker terminals depends upon the setting of the volume control and would vary from one model to the other. Here, the left and the right outputs (in case of a stereo deck) are fed to the input of an audio amplifier IC TBA810, via capacitors C1 and C2 $(0.01 \mu \mathrm{~F})$. These lowvalue capacitors help to maintain the required separation between left and right channels. Otherwise, at high frequencies the separation may fall tremendously, thereby short-circuiting L and R channels.

The 10k preset VR1 before IC TBA810 is used to control the output level so that at maximum output the potential at pin 5 of 555 is such that the frequency of 555 is between 1

Fig. 2
LED1-LED10 = RED LEDs LED11 - LED20 = GREEN LEDs
pin connected to the inverting terminal of a comparator inside the IC) is not grounded via a capacitor, but the potential at this pin is made to change in accordance with the audio level. This causes the internal flip-flop of timer NE555 to set and reset according to the audio level, and hence the output frequency varies correspondingly. This output is fed to the clock input pin of ring counter IC CD4017 whose output advances at a rate proportional to the clock input or the audio level present at pin 5 of IC2.
and 15 Hz (approximately). Otherwise, all the LEDs at the output of IC3 will appear flickering.

The other 10k preset VR2 is used to set the normal speed of the roulette, between 2 and 3 Hz .

One point to be noted here is, that the audio signals should be taken from the output of preamplifier IC of the deck just before the volume control. The output will depend on the setting of volume control (which we do not want) if the taken after the volume control.

The power supply for the circuit may be tapped from the power supply of the deck, as shown in Fig. 1. The power supply voltage in a deck is not exactly 12 V DC, but is around 15 to 18 V . It is preferable to connect a 7812 regulator IC for 12V regulation.

CIEVER RAIN-ALARM

M.K. CHANDRA MOULEESWARAN

Usually rain-alarms employ a single sensor. A serious drawback of this type of sensor is that even if a single drop of water falls on the sensor, the alarm would sound. There is a probability that the alarm may be false. To overcome this drawback, here we make use of four sensors, each placed well away from the other at suitable spots on the roof. The rain alarm would sound only if all the four sensors get wet. This reduces the probability of false alarm to a very great extent.

The four rain-sensors SR1 to SR4, along with pull-up resistors R1 to R4 (connected to positive rails) and inverters N1 to N4, form the rain-sensor-monitor stage. The sensor wires are brought to the PCB input points E1 to E5 using a 5-core cable. The four outputs of Schmitt inverter gates N1 to N4 go to the four inputs of Schmitt NAND gate N7, that makes the alarm driver stage.

When all four sensors sense the rain, all four inputs to gates N1 through N4 go low and their outputs go high. Thus all

put of gate N7 is high if any one or more of the rain-sensor plates SR1 through SR4 remain dry. The output of gate N7 is coupled to inverter gates N5 and N6. The output from gate N 5 (logic 1 when rain is sensed) is brought to 'EXT' output connector, which may be used to control other external devices. The output from the other inverter gate N6 is used as enable input for NAND gate N8, which is configured as a low-frequency oscillator to drive/modulate the piezo buzzer via transistor T1. The frequency of the oscillator/modulator stage is variable between 10 Hz and 200 Hz with the help of preset VR1. The buzzer is of piezo-electric type having a continuous tone that is interrupted by the low-frequency output of N8. The buzzer will sound whenever rain is sensed (by all four sensors).

6 V power supply $(100 \mathrm{~mA})$ is used here to enable proper interfacing of the CMOS and TTL ICs used in the circuit. The power supply requirement is quite low and a 6-volt battery pack can be easily used. During quiscent-state, only a negligible current is consumed by the circuit. Even during active state, not more than 20 mA current is needed for driving a good-quality piezo-buzzer. Please note that IC2, being of TTL type, needs a 5 V regulated supply. Therefore zener D1, along with capacitor C2 and resistor R5, are used for this purpose.

A parallel-track, general-purpose PCB or a veroboard is enough to hold all the components. The rain-sensors SR1 to SR4 can befabricated as shown in the construction guide in Fig. 2. They can be made simply by connecting alternate parallel tracks using jumpers on the component side. Use some epoxy cement on and around the wire joints at A and B to avoid corrosion. Also, the sensors can be cemented in place with epoxy cement.

If the number of sensors is to be

four inputs to N A N D gate N7 also go high and its output at pin 6 goes to logic 0. The out-
increased, just add another set of CD40106 and 7413 ICs along with the associated discrete components.

Another good utility of the rainalarm is in agriculture. When drip-irrigation is employed, fix the four sensors at four corners of the treepits, at a suitable height from the ground. Then, as soon as the water rises to the sensor's level, the circuit can be used to switch off the water pump.

LASER CONTROLLED ON/OFF SWITCH

Dr K.P. RAO

This circuit is built around a 555 timer using very few components. Since the circuit is very simple, even a novice can easily build it and use it as a controlling device. A laser
isfactorily, though it can be controlled from still longer distances. Aiming (aligning) the laser beam exactly on to the LDR is a practical problem.

The circuit is very useful in switch-
only in dark or dull-lit environments.
By focussing the laser beam on LDR1 the connected gadget can be activated through the relay, whereas by focussing laser beam on LDR2 we can

pointer, now easily available in the market, can be used to operate this device.

This circuit has been tested in operational conditions from a distance of 500 metres and was found to work sat-
ing on/off a fan at night without getting off the bed. It can also be used for controlling a variety of other devices like radio or music system. The limitation is that the circuit is operational
switch off the gadget. The timer is configured to operate in bistable mode.

The laser pointers are available for less than Rs 150 in the market. The cost of the actual circuit is less than Rs 50.

TEEEPHONE CONVERSATION RECORDER

PRADEEP VASUDEVA

This circuit enables automatic switching-on of the tape recorder when the handset is lifted. The tape recorder gets switched off when the handset is replaced. The signals are suitably attenuated to a level at which they can be recorded using the 'MICIN' socket of the tape recorder.

Points X and Y in the circuit are
connected to the telephone lines. Resistors R1 and R2 act as a voltage divider. The voltage appearing across R2 is fed to the 'MIC-IN' socket of the tape recorder. The values of R1 and R2 may be changed depending on the input impedance of the tape recorder's 'MIC-IN' terminals. Capacitor C1 is used for blocking the flow of DC.

The second part of the circuit controls relay RL1, which is used to switch on/off the tape recorder. A voltage of 48 volts appears across the telephone lines in on-hook condition. This voltage drops to about 9 volts when the handset is lifted. Diodes D1 through D4 constitute a bridge rectifier/polarity guard. This ensures that transistor T1 gets voltage of proper polarity, irrespective of the polarity of the telephone lines.

During on-hook condition, the output from the bridge (48 V DC) passes through 12 V zener D5 and is applied to the base of transistor T1 via the voltage divider comprising resistors R3 and R4. This switches on transistor T1 and its collector is pulled low. This, in turn,
causes transistor T2 to cut off and relay RL1 is not energised.

When the telephone handset is lifted, the voltage across points X and Y falls below 12 volts and so zenor diode D5 does not conduct. As a result, base of transistor T1 is pulled to ground potential via resistor R4 and thus is cut off. Thus, base of transistor T2 gets forward biased via resistor

R5, which results in the energisation of relay RL1. The tape recorder is switched 'on' and recording begins.

The tape recorder should be kept

loaded with a cassette and the record button of the tape recorder should remain pressed to enable it to record the conversation as soon as the handset is
lifted. Capacitor C2 ensures that the relay is not switched on-and-off repeatedly when a number is being dialled in pulse dialing mode.

SIMPLE AND ECONOMIC SINGIEPHASING PREVENTOR
 PRAVINCHANDRA B. MEHTA

Three-phase motors and other appliances are widely used in all sectors of industry. These appliances are prone to damage due to single phasing. Apart from damage to the costly apparatus, it may also cause a production loss. Many circuits of single phasing
the circuit diagram. Three-phase supply is given to apparatus (load) through contactor C . While the primaries of transformers X1, X2, and X3 are connected ahead of the contactor. The contactor can be energised via N/C (normally closed) contacts of relay RL1 by pressing
switch S1.
As soon as single-phasing or major unbalance occurs, 8 to 12 volts are induced across point P1-P2, which after rectification operates relay RL1. As a result, the supply to contactor coil is cut off and it de-energises, thereby protecting the apparatus. Lamp $L(d)$ is also lit up (unless B phase has failed), indicating that SPP has operated. Lamps L(a), $L(b)$, and $L(c)$ indicate the healthiness of three phases R, Y, and B. After resumption of the balanced 3-phase supply, the contactor will automatically energise (with S1 closed) and supply to the appliance will be resumed.

Notes: 1. In the actual circuit for- preventor (SPP) are available but the circuit suggested here is very simple and economical.

Easily-available mains step-down transformers X1, X2, and X3 (230V AC primary to $0-12 \mathrm{~V}, 500 \mathrm{~mA}$ secondary rating) are used with their primaries connected in star mode and secondaries in open delta mode. The characteristic of this type of connection is that when three-phase balanced input is applied to the primaries, no output across open delta secondaries will be available. But in case of major unbalance or single-phasing, some voltage, called residual voltage, is induced in the secondaries across points 1 and 6 shown in

warded by the author, the transformers X1, X2, and X3 primaries as well as switch S1 were connected after the contacts of contactor. As a result energisation of contactor was not feasible Even when switch S1 was shifted to a 'live' phase, relay RL1 (as well as contactor C) was energising/ de-energising in quick succession during singlephasing and causing sparking-for obvious reasons. Hence the circuit was suitably modified at EFY (as presented).
2. The relay was also changed from 12 V to 6 V rating, as 12 V relay was not
energising properly with single-phasing.
3. Proper polarity of the transformer connections has to be ensured in the above circuit. To determine proper polarity, connect the primary ends which are eventually to be connected to three phases, to any single phase (the other ends are connected to neutral). Now proceed to connect secondaries of two of the three transformers in series and measure the AC ouput across the unconnected ends. This should be double (24 V AC) of the individual secondary output $(12 \mathrm{~V} \mathrm{AC})$. If it is not so, reverse one of
the two secondary connections to get the required output. Similarly, connect the third transformer secondary in series with the other two secondaries. The output across the unconnected ends should now be treble (36 V AC). If it is not so, reverse the connections of the third secondary. Now shift the primary ends (connected to single phase) to each of the three phases, as shown in the figure. The vol tage across points P1-P2 will be nearly zero if all three phases are present.
-Technical Editor

SMART CLAP SWITCH

LOKESH KUMATH

Circuit of a smart clap switch, incorporating certain unique features, is presented here. It overcomes the shortcomings observed in normal dap switches. The following two special features, which you would not have observed in other clap switches, are included in its design:
(a) It comprises a 4×4 clap switch, i.e. it operates only when you dap four times to switch 'on' a device. Similarly, for switching 'off' the device, you are required to again dap four times.
(b) The clapping should occur within an interval of about 3.5 seconds, otherwise the clap switch status will remain unchanged.

In a simple dap switch, the connected device is switched 'on' by a single clap and is switched 'off' in a similar manner by a single dap. Since the transducer used in a clap switch is normally a condenser mic, it is unable to detect difference between a clap and a sound produced when a metallic object falls to the ground or simply the sound of a shouting person. This is a common problem in clap switches.

In the circuit of the smart clap switch, this problem is completely eliminated. Thus, it will not be affected by any spurious sound, including the one produced when a door is strongly banged. This can be well understood from the working of the circuit explained below.

The circuit

230 V AC is converted into 12 V regulated DC supply using 15-0-15,1A secondary, step-down transformer and other related components. Since CMOS ICs are used in the circuit, its power consumption is quite low and the noise immunity of the circuit is high (about 5.4 V).

Resistor R1 biases the condenser microphone and the electrical signals (converted from sound waves) are fed to buffer stage N1 with high input impedance. The high-frequency noise signals are bypassed to ground by shunting the microphone with capacitor C1. The mic output is fed to a preamplifier stage built
around op-amp N2. The gain of preamplifier stage is 6.6.

The next stage comprising capacitor C4 and resistor R6 constitutes a high-pass filter with a cut-off frequency of about 3 kHz . This filter avoids false activation of the switch by spurious low-frequency sounds such as those produced by a fan, a motorcycle, and other gadgets. Although this precaution may not be absolutely essential because we are using a coded sound, it provides additional safety.

The high-pass filter stage is followed by an amplifier stage around op-amp N3 with a gain of 23 . Thus, the overall gain of the op-amps N2 and N3 is about 150, which is quite adequate.

The next stage formed using op-amp N4 is a comparator. The reference voltage connected to the inverting terminal of the comparator can be varied, from about 0.2 V to about 8 V , by adjusting preset VR1. Thus, the sensitivity to clap sound can be set by preset VR1. The red LED D1 gives an indication that the clap signal has been detected.
[Note: IC6 (NE555), configured as a monostable, with a pulse width of 250 ms , has been added at EFY lab during the course of testing, to eliminate the effect of multiple pulses generated at the output of comparator N4, even with a single clap.]

The main control section is formed around IC5 (74C192 or CD40192), which is a 4-bit up/down presetable decade counter. 74C192/CD40192 is a CMOS version of 74192. Here, one can even use 74C193/CD40193, a 4-bit up/down binary counter, since counting up to decimal digit 8 only is involved. The above-mentioned

	TABLE I			
$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$	Switch/Device status
0	0	0	0	Device remains 'off' in this 0
0	0	1	region as Q_{C} remains at 0	0
1	0	logic low		
0	0	1	1	
0	1	0	0	Device remains 'on' in this 0
1	0	1	region as Q_{C} remains at	
0	1	1	0	logic high
0	1	1	1	
1	0	0	0	Device is reset to off state (unstable state)

ICs are pin-to-pin compatible.
The other ICs used in the control section are IC3 (dual JK flip-flop) and IC4 (NE555 timer, configured as monostable flip-flop). When power is applied to the circuit, IC3, IC4, and IC5 are reset by power-on reset circuits comprising capaci-tor-resistor combinations of C14-R19, C11R16, and C15-R21 respectively. Thus, all outputs of IC5 (Q_{A} to $\left.Q_{D}\right)$ are at logic zero. Hence, all the parallel load inputs (A through D) of IC5 are also at logic zero. The Q outputs of IC3 are 'low' while its $\overline{\mathrm{Q}}$ outputs are 'high'. The CLK2 input of IC3 is initially 'high' because transistor T1 is in conduction state.

Now, when a clap sound is produced, IC5 gets a low-to-high going clock pulse. Its count goes up from 0000 to 0001, i.e. it is incremented by one digit. Since Q_{A}

	PARTS LIST
Semi conductors:	
IC1	- LM324 quad op-amp
IC2	- $7812+12 \mathrm{~V}$ regulator
IC3	- CD4027 dual JK flip-flop
IC4, IC6	- NE555 timer
IC5	- 74C192 up/down decade counter
D1, D9	- Colour LED
D2-D4, D8	- 1N4007 rectifier diode
D5-D7	- 1N4148 switching diode
T1, T2	- 2N2907 pnp transistor
T3	- 2N2222 npn transistor
Resistors (all $1 / 4 \mathrm{~W}, \pm 5 \%$ metal carbon film, unless stated otherwise)	
R1, R15, R26	- 10-kilo-ohm
R2, R3, R18,	
R19, R21	- 100-kilo-ohm
R4, R7, R9,	
R13, R14, R16	
R20, R22, R23	- 1-kilo-ohm
R5, R6	- 5.6-kilo-ohm
R8, R24	- 22-kilo-ohm
R10	- 220-ohm
R11	- 4.7-kilo-ohm
R12	- 680-ohm
R17	- 33-kilo-ohm
R25	- 470-ohm
VR1	- 10-kilo-ohm preset
Capacitors:	
C1	- 47nF ceramic disk
C2, C3	- $4.7 \mathrm{HF}, 25 \mathrm{~V}$ electrolytic
C4, C6-C8, C12,	
C18	- $0.01 \mu \mathrm{~F}$ ceramic disk
C5, C10, C13	- $100 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic
C9	- $2200 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic
C11, C17	- 10رF, 25 V electrolytic
C14, C15, C16	- $0.1 \mu \mathrm{~F}$ ceramic disk
Miscellaneous:	
RL1	- 12V, 200-ohm relay
MIC1	- Condenser microphone
X1	- 230V AC primary to 15V-
	$0-15 \mathrm{~V}, 1 \mathrm{~A}$ secondary
	transformer
	- Heat-sink
F1, F2	- 1A fuse

goes from 'low' to 'high', it acts as a clock (CLK1) for first section of IC3. As a result $\overline{\text { Q1 }}$ of the IC3 goes 'low' to trigger IC4, which produces a pulse of about 3.5 -second duration at its output pin 3. The output of IC4 is inverted by transistor T1, which toggles the second JK flip-flop inside IC3. As a consequence, its Q2 output goes 'low' and the count present at the parallel load inputs are loaded. The parallel count loaded depends on the number of clock pulses arriving at IC5 within these $3.5-$ seconds, which again depends on the number of claps produced within the same period. Table I shows the status at parallel inputs of IC5 and the status of relay RL1 or the device connected via the normallyopen contacts of the relay to the supply.

Thefirst clap activates the monostable flipflop IC4. It is clear from Table I that if no further daps occur within $3.5 \mathrm{sec}-$ onds of the first dap, the parallel inputs to IC5 be come 0000 be-

Fig. 2: Actual-size, single-sided PCB layout for the circuit

Fig. 3: Component layout for the $P C B$
cause Q_{c} output (connected to C input) would still be 'low' when load input becomes active low, at the end of 3.5-second. period. Thus 0000 isloadedintol C5, thereby keeping the relay or the device connected
to the switch in its previous state.
This happens up to a total of three claps occuring within the allotted time duration of 3.5 -seconds. But if three more claps occur after the first clap, within the
allotted 3.5-second time, the output of IC5 becomes 0100 and the connected device turns 'on'. At this stage, the parallel input is 0100 and therefore, on parallel loading, the output of IC5 keeps the device in the 'on' state.

Even if a total of seven claps occur (i.e. three more claps after the device is 'on'), the counter remains loaded with 0100, thereby resetting the device to its previous state. Thus, once the device is 'on', it requires a total of four claps within 3.5 seconds to turn 'off' the device. This happens because at the fourth clap count, the output reaches 1000 (from its previous output of 0100). As a result, Q_{D} becomes 'high', and IC3 and IC5 are reset to their initial state.

Diode D5 is used to reset flip-flop 1 of IC3, once IC4 has been triggered. Transistor T2 is used to reset flip-flop 2 of IC3 when a $\overline{\mathrm{LD}}$ pulse has been applied to IC5. Manual reset switch S1 (tactile type) is used to switch off the connected device, at any instant. It thus serves as an 'emergency off' switch.

Precautions. The microphone should be soldered as close to the PCB as feasible, using shielded wire. Heat-sink should be provided for the regulator IC2. If you desire to change the timings within which claps should occur, use the formula given below to calculate the values of timing resistor R and capacitor C for the pulse width of a monostable flip-flop using timer IC NE555.
$t=1.1$ RC seconds
wheret is the time for which output goes 'high', R is the value of R17 in ohms, and C is the value of C13 in farads.

Finally, a switch across 'common' and 'N/O' contacts of therelay may beused to bypass the smart dap switch, if desired.

Actual-size, single-sided PCB for the circuit shown in Fig. 1 is given in Fig. 2. Component layout for the PCB is given in Fig. 3.

Electronic voting machine

JUNOMON ABRAHAM

Now-a-days electronic voting machines are being used effectively. The confidence of the voter in its flawless working is gradually building up and these machines are thus becoming quite popular throughout the country. (Please note that the design being presented here is not intended to resemble that of electronic voting machines used by the Election Commission. If any resemblance is noticed between the two, it is totally unintended.) Features of the electronic voting machines include avoidance of invalid votes and reduction of counting time and the consequent expenditure incurred on manpower deployment.

Hardware description

The voting machinecircuit being described here is designed around Intel's basic 8085 microprocessor. It has two main units:
(i) control and processing unit, and
(ii) keyboard and display unit.

Keyboard and display are interfaced through a general-purpose programmable peripheral interface (PPI) IC 8255. The system monitor programs are stored in 2732 EPROM. RAM 6116 is used for storing counts and a portion of it is also used as stack. IC 74LS373 (octal D-type latch) is used for segregating the lower order address bits from multiplexed address/ data bus of 8085. Two of the higher order bits are decoded by 74LS138 to generate chip select signals for IC4 through IC6. The address/address range for each device is shown in Table I. Please note that during I/O read/write instructions in $\mu \mathrm{P}$

TABLE I Address Map of Devices Used			
Address (Hex)	Device		
0000-01FF	EPROM		
$8000-80 \mathrm{FF}$	RAM		
C0	Port A		
C1	Port B		
C2	Port C		
C3	Control port	$\}$	Hore we have used ports B and A as output
:---			
Horts and port C as input port.			

8085, the 8-bit address used is duplicated on lower (AD0-AD7) as well as higher (A8A15) address bus.

The system runs with a clock frequency of 1.79 MHz (i.e. half the crystal oscillator frequency of 3.58 MHz). Auto reset facility is incorporated in this system for avoiding corruption of count during interruption in power supply. This is achieved by using the latching property of SCR. A battery backup ($3 \times 1.5 \mathrm{~V}$ UM3 type) is provided for RAM chip to retain the latest counts.

The control and processing unit comprises the 8085 microprocessor, memory (EPROM and RAM), and some function switches. To get an overview of the voting machine, we shall start with the explanation of the functional switches.

Start switch (S48). When the circuit is initially powered on, it is in reset state due to the auto reset facility. If you want to activate the system, press the 'start' button. This causes the SCR to conduct and take $\overline{\mathrm{RS}}$ pin 36 of 8085 to logic 'high'. As a result 8085 microprocessor becomes active. In this state, the microprocessor will execute the booting program (starting at location/address 0000 H).

Clear switch (S52). This switch is used for clearing the previous count in memory. When pressed, the RST 5.5 interrupt starting at location 002 CH is activated. Here the vector $(0100 \mathrm{H})$ pointing to the sub-routine for clearing the memory contents is stored.

Display switch (S50). This switch activates RST 7.5 interrupt (location 003 CH) containing vector for executing 'display routine' used for displaying the count of the votes polled by any candidate. If one wants to see the count of a specific candidate, 'display' switch is pressed first, followed by the depression of the switch on the keyboard allocated to the specific candidate.

Count switch (S51). This switch activates RST 6.5 interrupt (location 0034H, containing the jump address 00B6 for count subroutine) for activating the microprocessor to accept only one vote for a
candidate, by depressing the keyboard switch allocated to that candidate.

Reset switch (S49). If any malfunctioning is observed during the operation of the voting machine, the RESET switch can be used to shut down the system.

This voting machine has the capability to handle up to 48 candidates. Each switch on the keyboard represents one specific candidate. If one does not need all the 48 switches, only the required number of switches need to be wired. The remaining keyboard switches can be done away with. In this unit, LED D4 is used to indicate that the system is ready for accepting the next (one) vote.

Operating Procedure

1. Switch 'on' the power, using switch S53.
2. Press 'start' button.
3. A software-based security feature has been added in this system which requires one to enter the password digits via the keyboard for getting access to the machine for its operation. (The maximum length of password is seven digits, but it

	PARTS LIST
Semiconductors:	
IC1	- 8085A microprocessor
IC2	- 74LS373 octal latch
IC3	74LS138 decoder/ demultiplexer
IC4	- 27C32 EEPROM
IC5	- 6116A RAM
IC6	- 82C55 programmable peripheral interface
IC7	74LS47, BCD to 7-segment decoder/driver
IC8	- 7805, +5V regulator
T1-T4	- BC547 npn transistor
D1, D3	- 1N4001 rectifier diode
D2, D4	- Colour LED
SCR1	- BT169
Resistors (all $1 / 4 \mathrm{~W}, \pm 5 \%$ metal carbon film, unless stated otherwise)	
R1-R3	- 330-ohm
R4-R11	- 3.3-kilo-ohm
R12	- 47-ohm
R13, R22, R2	3-2.2-kilo-ohm
R14	- 680-ohm
R15-R21	- 68-ohm
Capacitors:	
C1	- 10pF ceramic disc
C2	- $0.1 \mu \mathrm{~F}$ ceramic disc
Miscel laneous:	
Xtal	- 3.58MHz crystal
S53	- On/off switch
S0-S52	- Tactile switch
	- Piezo buzzer
DIS1-DIS4	- LT542 common-anode
	display
	- 4.5 V battery

Fig. 2: Flow chart for the various software programs
can be changed by adjusting some values in the system software.) At present, only three-digit password is used. If the password digits entered via keyboard equal the password stored in the EPROM, LED D2 glows to give access for operation of the machine.
4. If the entered password is incorrect, press RESET button (S49) and proceed again from the first step.
5. Clear the previous content of count memory by pressing 'dear' button (S52). Clearance of memory is indicated by symbol ' u ' in the display.
6. Now press 'count' switch S51. The
display of symbol ' \sqsubset ' and the glowing of LED D4 would mean that the system is ready for accepting one vote. (Please note that the 'count' switch is placed under the control of electoral staff so that it is satisfied with the identity of the voter before allowing him/her to cast his/

TABLE II

Start Address Map of	
Address (hex)	Interrupt
0024	TRAP
002C	RST 5.5
0034	RST 6.5
$003 C$	RST 7.5

her vote.)
7. Now, the voter can cast his/her vote by pressing the appropriate keyboard switch allocated to the candidate of his/her choice. The acceptance of the vote by the system is acknowledged by a beep sound as well as the display of the ' \sqsupset ' symbol in the display and 'off' condition of LED D4.
8. Steps 6 and 7 have to be repeated for casting a fresh vote.
9. If the count of any particular candidate's votes (count) is needed to be displayed, press 'display' switch and then the switch corresponding to the specific candidate on the keyboard.
10. Reset the system.
11. Switch 'off' the system.

Software description

The system programs are stored in the EPROM. The entire software is divided into five modules, namely, booting, display, clearing memory, counting, and keyboard.

The operation of each module can easily be understood with reference to the flowcharts.

Booting. This module initialises thestack pointer 8255 PPI, verifies the password entered via the keyboard, and initialises the interrupts.

Display. This module uses the interrupt service subroutine at RST 7.5. This is used for displaying the count (votes) polled by each of the candidates.

Clearing memory. This module is invoked via interrupt servicesubroutineRST 5.5. It is used to clear the count memory.

Counting. This module uses the interrupt service subroutine RST 6.5. It activates the microprocessor to accept only one vote. If the count of any candidate exceeds '9999', it will produce a continuous beep sound and display ' \sqsubset ', and then onwards the system will not be ready for

Fig. 3: Actual-size, single-sided PCB layout for the circuit

Fig. 4: Component layout for the PCB
accepting any further vote. Thus, themaximum number of votes that can be registered against any one candidate should not exceed 9999. This is the limitation in the present design.

Keyboard. This module is used for checking key closure and generating the binary value corresponding to the closed switch.

Password security

This voting machine has a password option. The length of the password is limited
to a maximum of seven digits. The password should be decided before burning the program in the EPROM. Password checking is performed during execution of booting program. For entering the password, the same keyboard switches are used that otherwise represent specific candidates.

For the setting of password (PW), the length of PW is chosen first and then it is loaded into register C using instruction 'MVI A, length' in the booting program. The digits of the password are stored in memory locations 00F9H to 00FFH. Each of the PW digits chosen has to be multi-
plied by 4 and converted into hex format, and then stored in consecutive memory locations starting from 00 F 9 H . For example, if the PW is $1,4,8$, the length is loaded as 03 in register C and the data is as follows:

EPROM	Hex	Conversion	PW
digit			
Iocation	data		dit
OOF9	$\leftarrow 04$	$\leftarrow 04 \mathrm{H} \leftarrow 04 \leftarrow 4 \times 1$	1
OOFA	$\leftarrow 10 \leftarrow 10 \mathrm{H} \leftarrow 16 \leftarrow 4 \times 4$	4	
OOFB	$\leftarrow 20 \leftarrow 20 \mathrm{H} \leftarrow 32 \leftarrow 4 \times 8$	8	

An actual-size, single-sided PCB for the circuit shown in Fig. 1 is given in Fig. 3, while its component layout is given in Fig. 4.

Software Listings

Address	Opcode	Mnemonics	Comments
Booting	Program		
0000	31 FF 80	LXI SP, 80FF	Initialise SP
0003	3E 89	MVI A, 89	Initialise 8255
0005	D3 C3	OUT, C3	Port A, B = input, Port C = output
0007	11 F9 00	LXI D, 00F9	Load Stored Password (PW)
000A	OE 03	MVI C, 03	Password length $=3$ digits
000C	C5	PUSH B	
000D	D5	PUSH D	
000E	AF	XRA A	Makes contents of Acc. zero
000F	67	MOV H, A	Make H reg contents zero
0010	CD 7000	CALL KEYBOARD	
0013	D1	POP D	
0014	C1	POP B	
0015	1A	LDAX D	Load Acc. from mem loc pointed by DE
0016	BD	CMPL	
0017	C2 2300	J NZ 0023	If PW is incorrect, stop execution
001A	13	INX D	
001B	OD	DCR C	
001C	C2 OC 00	J NZ, 000C	
001F	3E C8	MVI A, C8	If PW is right, enable the interrupts and glow the LED (D2) to
0021	30	SIM	indicate that the system is
0022	FB	EI	energised
0023	76	HLT	

RST 5.5 (contains vector for memory clearing subroutine)

002C	00	NOP	
002D	C3 0001	J MP	Jump to Interrupt Secvice
		MEMCLEAR	Subroutine MEMCLEAR

RST 6.5 (contains vector for count subroutine)

0034	00	NOP
0035	C3 B6 00	J MP COUNT J ump to Interrupt Service
Subroutine COUNT		

RST 0030	Display su 00	broutine NOP	
003D	00	NOP	
003E	31 FF 80	LXI SP, 80FF	Initialise SP
0041	3E 1E	MVI A, 1E	Load data byte for displaying
0043	2600	MVI H, 00	display mode indicator ' \llcorner '
0045	CD 7000	CALL KEYBOARD	Check key dosure
0048	FB	El	
0049	E5	PUSH H	
004A	0610	MVI B, 10	Scan the display
004C	7 E	MOV A, M	
004D	B0	ORA B	

Address	Opcode	Mnemonics Comments
004E	DE C1	OUT C1
0050	11 7F 01	LXID 017F
0053	1B	DCX D
0054	7A	MOV A, D
0055	B3	ORA E
0056	C25300	J NZ 0053
0059	23	INX H
$005 A$	78	MOV A, B
005B	07	RLC
005C	47	MOV B, A
$005 D$	D2 4C 00	JNC 004C
0060	E1	POP H
0061	C3 4900	JMP 0049

Keyboard subroutine

0070	D3 C1	OUT C1	Display the mode
0072	CD 2001	CALL DELAY	(O/P contents of Acc. thro Port B)
0075	FB	El	
0076	IE 00	MVI E, 00	Scan the keyboard
0078	3E 80	MVI A, 80	
007A	0606	MVI B, 06	
007C	07	RLC	
007D	6 F	MOV L, A	
007E	B4	ORA H	
007F	D3 C0	OUT CO	
0081	DB C2	IN C2	
0083	OE 08	MVI C, 08	
0085	0 F	RRC	
0086	DA 9C 00	J C 009C	
0089	1 C	INRE	
008A	16 7F	MVI D, 7F	
008C	15	DCR D	
008D	C2 8C 00	J NZ 008C	
0090	OD	DCR C	
0091	C2 8500	J NZ 0085	
0094	7 D	MOV A, L	
0095	05	DCR B	
0096	C2 7C 00	J NZ 007C	
0099	C3 7600	J MP 0076	
009C	F3	DI	
009D	7B	MOV A, E	If closed key is sensed, multiply
009E	07	RLC	the key number by 4
009F	07	RLC	
00A0	6 F	MOV L, A	
00A1	3E 80	MIV A, 80	
00A3	67	MOV H, A	
00A4	D3 C0	OUT CO	Generate a beep
00A6	CD 2001	CALL DELAY	
00A9	AF	XRA A	
00AA	D3 C0	OUT CO	
00AC	C9	RET	

CONSTRUCTION

Address Opcode Mnemonics Comments

Count subroutine

00B6 31 FF 80 LXI SP, 80FF
00B9 3A D0 80 LDA 80D0 Load contents of mem loc 80D0
OOBC FE 80 CPI 80 If overflow occurs, generate

OOBE	C2 C4 00	J NZ 00C4	continuous beep
00 C 1	D3 C0		

00C3 76 HL
00C4 3E 1A MVI A, 1A
00 C 62640 MIV H, 40
00 C 8 CD 7000 CALL
KEYBOARD
$\begin{array}{lll}\text { OOCB } & \text { OE 04 } & \text { MIV C, 04 } \\ \text { OOCD } & 7 \mathrm{E} & \text { MOV A, M }\end{array}$
OOCE 3C INRA,
OOCF 77 MOV M, A
00D0 FE OA CPI OA
OOD2 C2EB 00
00D5
00D7
00D8
00D9 C2 CD 00 DCR C
OODC 2B DCXH
OODD 360 DVIM MVI
OODF 3 B $80 \quad$ MVI A, 80
OOE1 D3C0 OUT C0
00E3
00E6
00E8
OOEA
OOEF

If there is no overflow, load data byte for displaying count count mode indicator ' \square ' and glowing LED D4
Increment the count of the key number (candidate code) pressed Increment Acc
Move mem (HL) to Acc.

If it becomes 10, make mem $(\mathrm{HL})=0$

If overflow occurs, store 80 to memory locatio 80D0 and display ' \sqsubset '. Also generate a continuous beep

Success display ' \sqsupset '

Address Opcode

00FO 76

Mnemonics Comments
HLT

Password data

00F9 04 See text
00FA 10
OOFB 20

Memory clear subroutine

0100	210080	LXIH 8000	
0103	3600	MVI M, 00	Load '00' to RAM areas
0105	2C	INR L	
0106	C2 0301	JNZ 0103	
0109	3E 80	MVI A, 80	After clearing, generate
010B	D3 C0	OUT CO	a beep and display ' \sqcup '
$010 D$	CD 20 01	CALL DELAY	
0110	3E 1C	MVI A, 1C	
0112	D3 C1	OUT C1	
0114	AF	XRA A	
0115	D3 C0	OUT C0	
0117	FB	EI	
0118	76	HLT	

$0.8 \mathbf{s e c}$ Delay Subroutine

0120 F5 PUSH PSW
0121 C5 PUSH B

0122 01 FF FF LXI B, FFFF
0125 OB DCX B
012678 MOV A, B
0127 B1 ORA C
0128 C2 2501 JNZ 0125
012B C1 POP B
012C F1 POP PSW
012D C9 RET

www.electronicsforu.com

a portal dedicated to electronics enthusiasts

Watiertank level Meter

M.K. CHANDRA MOULEESWARAN

The water-tank level meter described here is very simple and useful for monitoring the water level in an overhead tank (OHT). The water level at 30 cm intervals is monitored and continuously indicated by LEDs arranged in a meter-format. When all the LEDs are 'off', it indicates that the OHT is empty. When the water level reaches the top limit, the whole LED-meter begins to flash.

The height at which the level-sensing electrodes are fitted is adjustable. Thus, the minimum and maximum level settings may be varied as desired. Therange of the
available material, it can be fabricated to meet one's own specific requirements.

The common ground reference electrode ' X ' is an aluminium conduit of 15 mm outer diameter and 3-metre length, to cater to a 3-metre deep overhead tank. Insulating spacer rings γ^{\prime} (10 mm length, 15 mm dia.) are fabricated from electrical wiring conduits of 15 mm inner diameter. These are pushed tightly over the aluminum conduit at preferred places, say 30 cm apart. If the pieces are too tight, they can be heated in boiling water for softening and then pushed over ' X '.

The sensor electrodes ' Z ' are made out
of copper or brass strips (6 mm wide and 1 mm thick) which are shaped into rings that can tightly slip over the γ^{\prime} pieces. The ends of these strips are folded firmly and formed into solder tags S1 to S10 and SG. The wall-mounting brackets, made of aluminium diecast, are screwed directly on ' X ' at two suitable places. The sensor cable 'WC' wires are soldered to solder tags, and some epoxy cement is applied around the joints and tags to avoid corrosion by water. The common ground reference wire ' SG ' is taken from tag 'T'. The cable's individual wires from S1 to S10 and SG are cut and matched in length for a neat layout. The other ends of the cable are connected to the PCB terminal points S1 to S10 and SG respectively. No separate ground is needed.

The electronics portion is simple and straightforward. A long piece of veroboard can hold all the parts including the power supply section. For easy installation, the LEDs can be set at the track side of the meter can also be enlarged to cater to any level.

No special or critical components are used. CMOS ICs are used to limit the idle current to a minimum level.

Even when all the LEDs are 'on', i.e. water reaches the top level, the demand on the power supply is reasonably low. Further, theextremely high input resistance of the Schmitt inverter gates reduces the input current and thus minimises the erosion of electrodes.

The principal part of the device is its wa-ter-level sensor assembly. By using easily

board, in a single line, so that they may be pushed through the cutouts in the front panel of the enclosure from inside.

The water level at 30 cm intervals is monitored by corresponding sensors, causing the input to the concerned inverters (normally pulled 'high' via resistors R1 through R10) to go 'low', as soon as water reaches the respective sensors.

On initial switching 'on' of the power supply, when the tank is empty, all the electrodes are open. As a result, all the inverter inputs are 'high' (via the pull-up resistors R1 to R10) and their outputs are all 'low'. Thus, all the LEDs are 'off'. As soon as the water starts filling the tank, the rising water level grounds the first sensor. The logic 1 output of first inverter gate N1 causes conduction of transistor T2 to extend ground to one side of resis-
tors R14 through R23 via emitter-collector path of transistor T2. The LED D1 is thus lit up.

Similarly, other LEDs turn 'on' successively as the water level rises. As soon as the water in OHT reaches the top level, the output of gate N10 goes to logic 1 and causes flashing-type LED D11 to start flashing. At the same time, transistor T1 conducts and cuts off alternately, in synchronism with LED D11's flash rate, to ground the base of transistor T2 during conduction of transistor T1. As a result, transistor T2 also starts cutting 'off' during conduction of transistor T1, to make the LED meter (comprising LEDs D1 through D10) flash and thus warn that the water has reached the top level. When the water level goes down, the reverse happens and each LED is turned 'off' suc-
cessively.
The novel feature of this circuit is that whenever the water level is below the first sensor, all the LEDs are 'off' and the quiescent current is very low. Thus, a power 'on'/'off' switch is not so essential. Even when the LED-meter is fully on, the current drawn from the power supply is not more than 120 mA . A heat-sink may, however, be used for transistor T2, if the tank is expected to remain full most of the time. A power supply unit providing unreguIated 6 V DC to 15 V DC at 300 mA current is adequate.

Caution. A point to be noted is that water tends to stick to the narrow space at the sensor-spacer junction and can cause a false reading on the LED-meter. This can be avoided if the spacers are made wider than 10 mm .

PHONE BROADCASTER

ANJ AN NANDI

Here is a simple yet very useful circuit which can be used to eavesdrop on a telephone conversation. The circuit can also be used as a wireless telephone amplifier.

One important feature of this circuit is that the circuit derives its power directly from the active telephone lines, and thus avoids use of any external battery

The switching voltage of the circuit depends on zener breakdown voltage (here 24 V) and switching voltage of the transistor T1 (0.7 V). Thus, if we adjust preset VR1 to get over 24.7 volts, it will cause the zener to breakdown and transistor T1 to conduct. As a result collector of transistor T1 will get pulled towards negative supply, to cut off transistor T2. At this
mitter section.
The low-power FM transmitter section comprises oscillator transistor T3, coil L1, and a few other components. Transistor T3 works as a common-emitter RF oscillator, with transistor T2 serving as an electronic 'on'/'off' switch. The audio signal available across the tel ephone lines automatically modulates oscillator frequency via transistor T 2 along with its series biasing resistor R3. The modulated RF signal is fed to the antenna. The telephone conversation can be heard on an FM receiver remotely when it is tuned to FM transmitter frequency.

Lab Note During testing of the cir- or other power supplies. This not only saves a lot of space but also money. It consumes very low current from telephone lines without disturbing its performance. The circuit is very tiny and can be built using a single-IC type veroboard that can be easily fitted inside a telephone connection box of $3.75 \mathrm{~cm} \times 5 \mathrm{~cm}$.

The circuit consists of two sections, namely, automatic switching section and FM transmitter section.

Automatic switching section comprises resistors R1 to R3, preset

VR1, transistors T1 and T2, zener D2, and diode D1. Resistor R1, along with preset VR1, works as a voltage divider. When voltage across the telephone lines is 48 V DC, the voltage available at wiper of pre set VR1 ranges from 0 to 32V (adjustable).
stage, if you lift the handset of the telephone, the line voltage drops to about 11V and transistor T1 is cut off. As a result, transistor T2 gets forward biased through resistor R2, to provide a DC path for transistor T3 used in the following FM trans-
cuit it was observed that the telephone used was giving an engaged tone when dialed by any subscriber. Addition of resistor R5 and capacitor C6 was found necessary for rectification of the fault.

TELEPHONE CALL METER USING CALCULATOR AND COB
 K. UDHAYA KUMARAN, VU3GTH

In this circuit, a simple calculator, in conjunction with a COB (chip-onboard) from an analogue quartz clock, is used to make a telephone call meter. The calculator enables conversion of STD/ISD calls to local call equivalents and always displays current local callmeter reading.

The circuit is simple and presents an el egant look, with feather-touch operation. It consumes very low current and is fully battery operated. The batteries used last more than a year.

Another advantage of using this circuit is that it is compatible with any type of pulse rate format, i.e. pulse rate in whole number, or whole number with decimal value. Recently, the telephone department announced changes in pulse rate format, which included pulse rate in whole number plus decimal value. In such a case, this circuit proves very handy.

To convert STD/ISD calls to local calls, this circuit needs accurate 1 Hz clock pulses, generated by dock COB. This COB is found inside analogue quartz wall clocks or time-piece mechanisms. It consists of IC, chip capacitors, and crystal that one can retrieve from scrap quartz clock mechanisms. These can be purchased from watch-repairing shops for less than Rs 20.

Normally, the COB inside clock mechanism will be in good condition. However, before using the COB, please check its serviceability by applying 1.5 V DC across terminals C and D, as shown in the figure. Then check DC voltage across terminals A and B; these terminals in a clock are connected to a coil. If the COB is in good condition, the multimeter needle would deflect forward and backward once every second. In fact, 0.5 Hz clock is available at terminals A and B, with a phase difference of 90°. The advantage of using this COB is that it works on a 1.5 V DC source.

The clock pulses available from ter-
minal A and B are combined using a bridge, comprising diodes D1 to D4, to obtain 1 Hz clock pulses. These clock pulses are applied to the base of transistor T1. The collector and emitter of transistor T1 are connected across calculator's ' $=$ ' terminals.
will be further incremented according to pulse rate. So one call should always be included before counting the calls.

For making call in pulse rate 4, slide switch S1 to 'off' (pulse set position) and press calculator buttons in the following order: 1 , ‘ + ’, 0.25 , ‘ $=$ '. Here, 1 is initial count, and 0.25 is PRE. Now calculator displays 1.025. This call meter is now ready to count. Now make the call, and as soon as the call matures, immediately slide switch S1 to 'on' (start/standby position). The COB starts generating dock pulses of 1 Hz . Transistor T1 conducts once every second, and thus ' $=$ ' button in calculator is activated electronically once every second. The calculator display starts from 1.25, advancing every second as follows:

The number of pulses forming an equivalent call may be determined from the latest telephone directory. However, the pulse rate (PR) found in the directory cannot be used directly in this circuit. For compatibility with this circuit, the pulse rate applicable for a particular place/distance, based on time of the day/holidays, is converted to pulse rate equivalent (PRE) using the formula PRE =1/PR.

You may prepare a look-up table for various pulse rates and their equivalents (see Table). Suppose you are going to make an STD call in pulse rate 4 . Note down from the table the pulse rate equivalent for pulse rate 4 , which is 0.25 . Please note that on maturity of a call in the telephone exchange, the exchange call meter immediately advances to one call and it
$1.25,1.5,1.75,2.00,2.25,2.50$, and so on.

After finishing the call, immediately slide switch S1 to 'off' position (pulse set position) and note down the local call meter reading from the calculator display. If decimal value is more than or equal to 0.9, add another call to the whole number value. If decimal value is less than 0.9, neglect decimal value and note down only whole numbers.

To store this local call meter reading into calculator memory, press ' $\mathrm{M}+$ ' button. Now local call meter reading is stored in memory and is added to the previous local call meter reading. For continuous display of current local call meter reading, press 'MRC' button and slide switch S1 to 'on' (start/standby position). The cur-

LOOKUP TABLE												
Pulse rate (PR)	2	2.5	3	4	6	8	12	16	24	32	36	48
Pulse rate eqlt. (PRE)	0.500	0.400	0.333	0.250	0.166	0.125	0.083	0.062	0.041	0.031	0.027	0.020

[^0] or six decimal places.
rent local call meter reading will blink once every second.

In prototype circuit, the author used TAKSUN calculator that costs around Rs 80. The display height was 1 cm . In this calculator, he substituted the two buttontype batteries with two externally connected 1.5V R6 type batteries to run the calculator for more than an year.

The power 'off' button terminals were made dummy by affixing cellotape on contacts to avoid erasing of memory, should someone accidentally press the power 'off' button. This calculator has auto 'off' facility. Therefore, some button needs to be pressed frequently to keep the calculator
'on'. So, in the idle condition, the ' $=$ ' button is activated electronically once every second by transistor T1, to keep the calculator continuously 'on'.

Useful hints. Solder the ' $=$ ' button terminals by drilling small holes in its vicinity on PCB pattern using thin copper wire and solder it neatly, such that the ' $=$ ' button could get activated electronically as well as manually. Take the copper wire through a hole to the backside of the PCB, from where it is taken out of the calculator as terminals G and H .

At calculator's battery terminals, solder two wires to ' + ' and ' - terminals. These wires are also taken out from cal-
oulator asterminalsE andF. Affix COB an a gen-eral-purpose PCB and sodder theremaining components neatly. For giving the unit an elegant look, purchaseajewellery plasticboxwithflip-typecover (size $15 \mathrm{~m} \times 15 \mathrm{~cm}$). Now fix theboard, calculator, and batteries, along with hdder insidethejewellery box. Then mount thebox on the wall and pastethe lock-up tableinsidethebox cover in such a way that on openingthebox, it is visibleonlet sideofthebox.

Caution. Thenegativeterminals of battery A and battery B aretobekept isdated fromeach cher for proper qperation of this drait.

SIMPLE ELECTRONIC CODE LOCK

REJO G. PAREKKATTU

The circuit diagram of a simple electronic code lock is shown in figure. A 9-digit code number is used to operate the code lock.

When power supply to the circuit is turned on, a positive pulse is applied to the RESET pin (pin 15) through capacitor C1. Thus, the first output terminal Q1 (pin 3) of the decade counter IC (CD 4017) will be high and all other outputs (Q2 to Q10) will be low. To shift the high state from Q1 to Q2, a positive pulse must be applied at the clock input terminal (pin 14) of IC1. This is possible only by pressing the push-to-on switch S1 momentarily. On pressing switch S1, the high state shifts from Q1 to Q2.

Now, to change the high state from Q2 to Q3, apply another positive pulse at pin 14 , which is possibleonly by pressing switch S2. Similarly, thehigh statecan be shifted up to the tenth output (Q10) by pressing the switches S1 through S9 sequentially in that order. When Q10 (pin 11) is high, transistor T1 conducts and energises relay RL1. The relay can be used to switch 'on' power to any electrical appliance.

Diodes D1 through D9 are provided to prevent damage/malfunctioning of the IC when two switches corresponding to 'high' and 'low' output terminals are
pressed simultaneously. Capacitor C2 and resistor R3 are provided to prevent noise
number or letter can beused tomark them Switch S10 is alsoplaced together with other switches so that any stranger trying tooperatethelock frequently pressestheswitch S10, thereby resettingthe dirait manytimes. Thus, heisnever abletoturnthe relay 'on'. If necessary, twoor threeswitches can be connected in paralled with S10and placedonthekeyboard pand for moresafety.

A 12 V power supply is used for the circuit. The circuit is very simple and can beeasily assembled on a general-purposePCB. The codenumber can beeasily changed by changingthe

during switching action.
Switch S10 is used to reset the circuit manually. Switches S1 to S10 can be mounted on a keyboard panel, and any
connetionstoswitches(S1toS9).

LITCH-UP ALARM USING OPTO-COUPLER

PRADEEP G.

The latch-up alarm described here is based on single IC NE555, configured as an astable multivibrator. The timing components are selected such that the oscillation frequency of the multivibrator lies within the audio range. Instead of a flip-flop stage, an opto-coupler (MCT2E) is used for latching of the alarm.

Under normal condition, pin 4 of IC1 is pulled to ground via resistor R2, and its output at pin 3 is held 'low'. When switch S1 is pressed momentarily, transistor T1 conducts to bring reset pin 4 of 555 to logic 'high'. As a result, IC1 is activated and the alarm starts to sound.

Simultaneously, the LED inside optocoupler glows and the phototransistor conducts. As a result, trigger transistor T1 gets base bias via phototransistor and resistor R6. The alarm sounds continuously until reset switch S 2 is pressed. When switch S 2 is pressed, transistor T1 is switched 'off' to bring pin 4 of IC1 to logic 'low' and the alarm is disabled.

MINI VOICE-PROCESSOR

(BASED ON UMC APPLICATION NOTE AND DATA SHEET FOR IC UM5506B)

speaker. For understanding the operation, the functions of switches S1 through S4 and their corresponding pins is described below.
$\mathrm{Sl}(\overline{\mathrm{RECL}})$. Pressing (grounding) this

The UM5506B is a highly integrated voice processor CMOS IC with inbuilt ADM (adaptive delta modulation) capability. The chip integrates an analogue comparator, a 10-bit D/A converter, a low-pass filter, an op-amp, and a 96-kilobit static RAM. It has an on-chip amplifier for sound recording and direct speaker driving capability.

Although 28 pins/pads are shown in the figure, its COB version mounted on a PCB, as tested at EFY Lab, had only 16 lines coming out of the COB. These lines, after proper identification, have been indicated with asterisk (*) marks in Fig. 2. Very few external components are needed for its use in applications such as greeting cards or toys. The tested PCB measured $3 \mathrm{~cm} \times 5.25 \mathrm{~cm}$ and required only 3 -volt supply for operation.

The IC, along with external components, as shown in Fig. 2, can be used for recording of sound for a recording length of 6 seconds. During record mode, the

voice signals picked up by the condenser mic are converted into digital signals using ADM algorithm and stored in its internal SRAM. During play mode, the digital data is converted back into analogue signals and played back through the
pin ends the power-down mode and initiates a record cycle. Recording continues as long as this pin is held 'low', provided memory is not completely filled. If memory is full or the pin is 'high', it enters the power-down mode.

S2 (PLAYL). Pressing (grounding) this pin ends the power-down mode and initiates the play cycle. The stored/recorded message is played until finished or this pin is taken 'high'.

S3($\overline{\text { PLAYE }) . ~ P r e s s i n g ~}$ (grounding) this pin momentarily ends the power-down mode and enters the play mode. Subsequent taking of this pin 'high' has no effect. However, pressing this pin once more finishes the play mode and the chip enters the power-down mode. The action is analogous to the falling-edge trigger mode.

S4 ($\overline{\text { PLAY/ RPT }}$). Pressing (grounding) this pin ends the power-down mode and enters the play mode. The chip will complete the recorded message and then keep repeating the message as long as it is kept pressed. When released, it will en-

ter the power-down mode.
LED1 connected to $\overline{\mathrm{BUZY}}$ pin lights up to indicate end of power-down mode and remains 'on' during record
and play-mode active period. A beep is produced in the speaker to indicate start of record cycle and also that the memory is full.

DICITAL NUMBER SHOOTING GAME

A. JEYABAL

Many electronic video games are available in the market. But for those who may prefer to assemble the game themselves, a digital number shooting game circuit is described here.

A train of singledigit random numbers appears on a 7-segment display, and the player has to shoot a number by pressing a switch corresponding to that number before it vanishes. If he shoots the number, he scores ten points which are displayed on the scoreboard. Successful shooting is accompanied by a beep sound.

The circuit

Fig. 1 shows the block diagram of the whole circuit. Blocks 1, 2, and 3 constitute the random number generator. Block 4 controls the ten triggering switches and block 5 checks for any foul play. The scoreboard is constituted by blocks 6 and 7, while block 8 is meant for audio indication.

Block 9 controls the speed of the number displayed, the digital counter, the switch controller, and the foul play checker.

Clock pulse generator. The sche-
matic diagram of digital number shooting game is shown in Fig. 2. The Schmitt trigger input NAND gates N1 and N2 of IC CD4093 (IC1) are used for producing clock pulses for random number generation. NAND gate N2, in combination with capacitor C2 and resistor R2, forms an oscillator to produce pulses. NAND gate N1 and its associated components comprising capacitor C 1 and resistor R1 form another oscillator, whose frequency is ten times less than of the former oscillator.

The pulses from the two oscillators are ANDed by NAND gate N2 to get random clock pulses. The output frequency from gate N2 (pin 4) varies due to phase difference between the two oscillator frequencies and the period of 'on' state of output from gate N3 (pin 10).

The prototype was carefully watched for consecutive 150 random numbers generated by IC2 (and displayed on DIS.1). No repetition in the order of the numbers was witnessed but, interestingly, at times, the same number was repeated thrice.

Random number generator and switch controller. The output of gate N2 (pin 4) is connected to pin 1 of decade counter/decoder/7-segment LED driver CD4033 (IC2). This IC counts and drives

Fig. 1: Block diagram of the digital number shooting game the 7-segment display DIS.1. The control pulse produced by gate N3 activates this display.

The clock pulses also go to decade counter/decoder IC CD 4017 (IC3, pin 14). This IC controls the
trigger switches. Ten push-to-on switches designated 'S0' through 'S9' are connected to the ten Q outputs (pins 3, 2, 4, $7,10,1,5,6,9$, and 11 respectively) of this IC.

These Q outputs become 'high' one by one sequentially with every clock pulse. IC2 and IC3 must count in unison, i.e. for the number shown in the display the corresponding Q output of IC3 should be 'high'. For the numbers 0 through 9, the Q0 through Q9 outputs of IC3 respectively must become 'high'. For this purpose, the 'carry out' (pin 5) of IC2 is connected to the reset pin 15 of IC3 through a differentiator circuit comprising resistor R4 and capacitor C3.

During the transition from 9 to 0 , the state of 'CO' pin 5 changes from 'low' to 'high' and the differentiator circuit produces a sharp pulse to reset IC3. Thus, in every ten pulses, any timing difference, if present, is corrected. Resistor R3 (470k) connected in parallel to capacitor C3 quickly discharges it during the low state of 'CO' pin 5 of IC2.

Control pulse generator. NAND gate N3, along with its external components, forms another oscillator of very low

PARTS LIST	
Semiconductors:	
IC1	CD4093 Schmitt trigger quad two-input NAND gate
IC2, IC5, IC6	CD4033 decade counter/ decoder/7-segment LED display driver
IC3	CD4017 decade counter/ decoder
IC4	CD4027 dual J K flip-flop
T1, T2	BC547 npn silicon transistor
DIS.1-DIS. 4	LT543 common-cathode, 7-segment LED display
Resistors (all $1 / 4 \mathrm{watt}, \pm 5 \%$ carbon film, unless stated otherwise)	
R1,R2,R4,R6-R9	100-kilo-ohm
R3	470-kilo-ohm
R5	1-mega-ohm
R10-R12	1-kilo-ohm
VR1	1-mega-ohm pot
Capacitors:	
C1	$0.1 \mu \mathrm{~F}$ ceramic disk
C2	$0.01 \mu \mathrm{~F}$ ceramic disk
C3	$0.001 \mu \mathrm{~F}$ ceramic disk
C4	$0.22 \mu \mathrm{~F}$ ceramic disk
C5	100 $\mathrm{F}, 16 \mathrm{~V}$ electrolytic
Miscel laneous:	
PZ1	Piezo buzzer, continuous type
S0-S10	Push-to-on switch
S11	On/Off switch
	DC IN socket

frequency (of the order of 1 Hz to 4 Hz). Its frequency can be varied with the help of potentiometer VR1.

For proper functioning of CD4033 and CD4017, their clock-enable (CE) pins 2 and 13 respectively must be held 'low'. These pins are connected to the output of gate N3 (pin 10). If these pins are in logic high state, the ICs are disabled from receiving clock pulses, and the Q outputs of IC3 and segment drive outputs of IC2 retain their last state before the CE pins go 'high'.

The control clock pulses from gate N3 also go to the base of transistor BC547B (T1). This transistor pulls down the common cathode of 7-segment LED display DIS. 1 to ground during the high level of control clock pulses, to display the number.

The control pulse also performs one more function. After being inverted by NAND gate N4, it resets JK flip-flop IC CD4027 (IC4), which serves as the foul play checker.

In nutshell, during the low state of output of gate N3, both IC2 and IC3 are enabled and the pulses are counted by IC2, but the number cannot be seen in the display because transistor T 1 is reverse biased and cut-off.

When the output of gate N3 changes to high state, IC2 and IC3 are disabled. T1 gets its base voltage and pulls down the cathode of display DIS.1, and the display shows the number (which is a random number). At the same time, the Q output of IC3 corresponding to the displayed number goes 'high'.

Now, if one presses the correct key corresponding to the number shown in the display, before it vanishes, a high-going pulse is applied to clock input pin 3 of IC4. Its Q output (pin 1) becomes 'high', which advances the tens counter (IC5 of the scoreboard). It also biases transistor T2, to drive the piezo buzzer PZ1 for confirmation of the number shot.

Foul play checker/debouncer. Due to bouncing, the switches produce spurious pulses and lead to erratic operation. The player may press a switch more than once to score more, and may keep pressing a switch before the respective number is displayed. This is where the foul play checker/debouncer circuit comes into play.

For faithful operation, the circuit requirements are as follows:

Fig. 3: Actual-size, single-sided PCB layout

Fig. 4: Component layout for the $P C B$

1. The spurious pulses must be ignored.
2. The counter must advance only on the first pressing of the switch for a number and further pressing must be ignored.
3. The pressing of the switch should be effected only after the corresponding number is displayed.

To fulfil all these conditions, the dual JK flip-flop IC CD4027 (IC4) is employed and only one of the two flipflops is used. The flip-flop is inhibited when both J and K inputs are low (requirements 1 and 2). The data on the J input is transferred to the Q output for a positive-going clock pulse only (requirement 3). The K input (pin 5) of IC CD4027 is grounded and J input (pin 6) is connected to $\overline{\mathrm{Q}}$ output (pin 2). One terminal of all the ten switches is connected to clock input (pin 3) of IC4. Control pulses from gate N3 (pin 10) are inverted by gate N 4 before it goes to
reset pin 4.
During the low-level period of gate N3, output of gate N4 is 'high' and the flip-flop (IC4) is in the reset state. If any one of the ten switches is pressed, even though clock pulses are present at dock input (pin 3) of IC4, the Q output will not change, as this IC is in the reset state.

When the output of gate N3 is 'high', the output of gate N 4 is 'low', which clears IC4 from the reset state. If the player presses the correct switch, a clock pulse is applied to the clock input (pin 3) of IC CD4027. The 'high' level data fromJ input is transferred to Q output (pin 1) of this IC and IC5 advances by one count, which means ten points (DIS. 2 is always zero). Now $\overline{\mathrm{Q}}$ output (pin 2) of IC4, which is connected toJ input, goes 'low'. As both J and K inputs are at low level, IC4 is inhibited and further clock pulses to pin 3 of IC4 have no effect.

Score counter and scoreboard. This block comprises two decade counter/ decoder/7-segment display driver ICs CD4033 (IC5, IC6), and three common cathode 7-segment LED displays (DIS. 2 through DIS.4). The ' a ' through ' f ' segments of DIS.1, meant for units, are directly connected to positive supply rail and its cathode is connected to negative supply rail through a 1 k (R12) cur-rent-limiting resistor. Thus it always shows zero.

The Q output (pin 1) of IC4 is connected to clock input (pin 1) of IC5, the tens counter. The carry-out (pin 5) of IC5 is connected to the clock input (pin 1) of IC6 for cascading hundreds counter. The CE (pin 2) and Lamp Test (pin 14) of both IC5 and IC6 are grounded, for proper functioning. Both resets (pin 15) are grounded through a 100k (R9) resistor and connected to positive supply, through reset switch S10.

Ripple blanking input (pin 3) of IC6 is grounded, so the leading zero to be displayed in DIS. 4 will be blanked out. The ripple blanking output (pin 4) will be low while the number to be displayed is zero. Likewise, zero will be blanked out in display DIS.3, because RBO of IC6 is connected to RB1 of IC5. So when reset switch S10 is depressed, the unit counter display shows only zero and the other two displays are blanked out.

The maximum score which can be displayed is 1000, after which it automatically resets to zero.

Sound-effect generator. For simplicity and compactness, a piezo buzzer (continuous type) is employed. When the Q output of IC4 goes high, after the correct switch is pressed, it forward biases transistor BC547B (T2) and drives the piezo buzzer. This produces a beep sound for confirmation of successful shooting of that number.

Construction

This circuit can be assembled on a readymade PCB or strip board. However, a proper single-sided PCB for the circuit of Fig. 2 is shown in Fig. 3 and its component layout is shown in Fig. 4. For switches, push-to-on tactile or membrane switches can be used. For power supply, four pen-torch cells (AA3) can be used with a battery holder. DC IN socket is provided for connecting a battery eliminator for operating it on mains supply.

PC ITTERFACED AUDIO PLaYBaCK DENICE: M-PLAAYER

N.V. VENKATARAYALU AND M. SOMASUNDARAM

Sounds of various kinds have always fascinated human beings. Many devices have been invented for recording and playing back the soundsfrom magnetic tapes to DVD (digital versatile disc), from Adlib cards to high-performance sound cards with 'surround sound' capability. For personal computers (PCs), there is a wide variety of such devices. A modern PC, generally, has a 'Sound Blaster' card installed in it. If your PC does not have a sound card, here is a low-cost audio playback circuit with bass, treble, and volume controls to create your own music player.

The playback device 'M-player' (i.e. media player) described here uses minimal hardware to achieve a moderately good-quality audio playback device. The software that accompanies the hardware is meant for a PC running under MS-DOS or a compatible operating system. This device can play a simple 8 -bit PCM (pulse code modulation) wave file with some special effects. The PC is connected to the device through the PC parallel port.

Hardware

The circuit functions as an 8-bit mono player, i.e. the sound files (with .WAV extension) with sound quantised to eight bits or 256 levels can be played. In case of files with 16-bit quantisation, these are requantised as discussed under 'Software' subheading. Thus, only eight bits are sent to the card through the printer port.

Since there is no duplex communication necessary between the player card and the PC, it is sufficient to use the eight output data lines of the port 378H (pins 2 through 9 of 25 -pin D-connector). This 8bit digital output is converted into an analogue signal using DAC 0808 (IC1) from National Semiconductor.

The output current from the DAC varies with the input digital level (represented by bits D0 through D7), the reference voltage ($\mathrm{V}_{\text {ref }}$), and the value of series resistor R1 connected to $\mathrm{V}_{\text {ref }}$ pin 14 of DAC0808 IC. The output current I_{0} (in $m A$) is given by the relationship:

$$
\begin{array}{r}
\mathrm{I}_{0}=\frac{\mathrm{V}_{\text {ref }}}{\mathrm{R} 1}\left[\frac{\mathrm{D} 7}{2}+\frac{\mathrm{D} 6}{4}+\frac{\mathrm{D} 5}{8}+\frac{\mathrm{D} 4}{16}+\right. \\
\\
\left.\quad \frac{\mathrm{D} 3}{32}+\frac{\mathrm{D} 2}{64}+\frac{\mathrm{D} 1}{128}+\frac{\mathrm{D} 0}{256}\right]
\end{array}
$$

where $\mathrm{V}_{\text {ref }}$ is the reference voltage in volts and R1 is the resistance in kilo-ohms.

The output current from the DAC is converted into its corresponding voltage using a simple current-to-voltage converter wired around one part of the dual wideband J FET op-amp LF353. The output from IC2(a) is the required audio signal that has to be processed and amplified to feed the speaker. The part following the I-V converter is the bass- and treble-control circuit employing RC-type variable low-pass and high-pass filters connected to the input of audio amplifier built around the second op-amp inside LF353 [IC2(b)].

The frequency response of the filters can be varied using potentiometers VR1 and VR2. The low frequencies or bass can be cut or boosted with the help of potentiometer VR1. Similarly, high frequencies or treble can be cut or boosted with the help of potentiometer VR2. At low frequencies, capacitors C2, C3, and C4 act as open circuits and the effective feedback is through 10k resistors (R4, R5, and R6) and potentiometer VR1.

The audio amplifier IC2(b) acts as an inverting amplifier and the amplification (or attenuation) of the low-frequency bass signals depends on the value of potentiometer VR1. The frequency $f 1$ at which C $=C 2=C 3$ becomes effective is given by the equation:

Fig. 1: Circuit of M-player audio playback device

$$
\mathrm{fl}=\frac{1}{2 \pi \mathrm{x} \mathrm{VR} 1 \times \mathrm{C}} \mathrm{~Hz}
$$

At frequnecies higher than f2 (f>f2, high end of audio range), capacitors C2 and C3 overcome the effect of potentiometer VR1. As C2 and C3 behave as short, potentiometer VR1 has no effect on the output response. Now, the gain is controlled by treble potentiometer VR2. The frequency f2, below which treble potentiometer VR2 has no effect on the response, is given by the equation:

$$
\mathrm{f} 2=\frac{1}{2 \pi \mathrm{xVR} 2 \times \mathrm{C} 4} \mathrm{~Hz}
$$

The output of this module is sent to the final 2-watt audio power amplifier (LM380) stage through potentiometer VR3 which is used as the volume control. The power output of this module is fed to an 8-

PARTS LIST	
Semiconductors:	
IC1	DAC0808 8-bit D/A converter
IC2	LF353 JFET input wide-band op-amp
IC3	- LM380, 2-watt audio amplifier
Resistors (all $1 / 4 \mathrm{wwatt}, \pm 5 \%$ carbon film, unless stated otherwise)	
R1	4.7-kilo-ohm
R2, R9	- 47-kilo-ohm
R3	- 1-kilo-ohm
R4-R6	- 10-kilo-ohm
R7, R8	39-kilo-ohm
VR1	- 100-kilo-ohm potmeter
VR2	- 470-kilo-ohm potmeter
VR3	50-kilo-ohm potmeter
Capacitors:	
C1	- $1 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic
C2, C3	- $0.05 \mu \mathrm{~F}$ ceramic disk
C4	- $0.005 \mu \mathrm{~F}$ ceramic disk
C5-C7	- $2.2 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic
C8, C9	- $470 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic
Miscellaneous:	
	- 25-pin D connector (male)
	- Loudspeaker 8-ohm, 2W
	- Power supply: (a) $+12 \mathrm{~V}, 500 \mathrm{~mA}$

ohm speaker. The output-end audio power amplifier is designed to give a gain of around 50 .

One can also use LM380 in various other configurations as per one's requirements. Another popular configuration is the 'bridge configuration'-in which two LM380s can be used to obtain larger power output with a gain of 300 .

Parallel port

The output of the parallel port is TTL compatible. So, logic level 1 is indicated by +5 V and logic level 0 by $0 V$. The current that one can sink and source varies from port to port. Most parallel

Fig. 2: Actual-size PCB layout for M-player

Fig. 3: Component layout for the PCB
ports can sink and source around 12 mA .

The software assumes 0×378 (378H) to be the base address of the parallel port to which the device is connected. Another possible base address is 0×278 (278 H). It is advised to modify this address of the parallel port in the software program, after checking the device profile.

Actual-size PCB layout for audio playback circuit of Fig. 1 is given in Fig. 2 and its component layout in Fig. 3.

Software

The software accompanying this construction project is written in Turbo C/C++for

TABLE I Relevant Retails of Parallel Port				
Pin No. (D-type 25)	Pin No. (centronics)	SPP signal	Direction	Register
2	2	Data 0	Out	Data
3	3	Data 1	Out	Data
4	4	Data 2	Out	Data
5	5	Data 3	Out	Data
6	6	Data 4	Out	Data
7	7	Data 5	Out	Data
8	8	Data 6	Out	Data
9	9	Data 7	Out	Data
$18-25$	$19-30$	Ground	Gnd	

DOS. It can be used to play simple 8-bit PCM wave files. 16 -bit wave files are converted into 8bit PCM data before proceeding.

Even stereo wave files can be played; but not the stereo way. Only one channel is chosen. Up to six-channel PCM data can be read and con-
verted into mono 8-bit PCM data. This software is accompanied with a $\mathrm{C}_{\mathrm{T}} \mathrm{UI}$ based interface.

The wave file format is probably the least undocumented sound format since there are different schemes with different number of chunks of related information in the file. Even the chunks can be of variable size. Therefore it is difficult to get documentation on all available chunks.

This software can be used only on PCM data with data chunk. Every wave file has some minimum chunks (see Table II). These chunks will be present in every wave file. Then there are other chunks which are actually non-standard. In PCM itself, the above chunk may be followed either by DATA chunk or by LIST chunk which, in turn, has lots of sub-chunks. (Any information obtained on these chunks by the readers may please be shared with the authors.)

During playback, the speed with which the processor in the PC can execute the main loop is first studied using a dummy loop and thus the delay is adaptively varied with respect to the speed

TABLE II Wave File Format		
From byte	Number of bytes	Information
RIFF chunk:		
0	4	Contains the characters 'RIFF'
4	4	Size of the RIFF chunk
WAVE chunk:		
0	4	Contains the characters 'WAVE'
4	Variable	The FORMAT chunk
The normal FORMAT chunk:		
0	4	Contains the characters 'fmt'
4	4	Size of the FORMAT chunk
8	2	Value specifying the scheme
		1-PCM, 85-MPEG layer III
10	2	Number of channels
		1-mono, 2-stereo, etc.
12	4	Number of samples per second.
		This gives us the playback rate.
16	4	Average number of bytes per second.
20	2	Contains block alignment information.
22	Variable	This field contains format-specific data. For PCM files, this field is 2 bytes long

of target processor. This is one of the methods to achieve invariance of the playback speed over a wide range of processor speeds available.

The software can be used to play with the following effects:

- Play normally
- Play with a different playback rate, i.e. play it fast or slow
- Fade-in or fade-out the volume levels either linearly or exponentially
- Reverse the wave file and then play

The menu items can be selected using keyboard keys Alt+F for file, Alt+E for effects, and Alt+O for operation. Apart from the software, the hardware can be used to vary bass, treble, and volume for the wave file that is played. Thus, the hardware and software complement each other to provide a good music player. The software
does not include mouse support.

Conclusion

We have presented a simple sound card to playback .wav files with bass and treble controls. Though the current design plays only mono files (stereo files are converted to mono), a stereo file player can be designed in a similar manner. The software can be modified to play audio files other than .wav files without any change in the hardware circuit. The encoding format of the other audio file types (like .ra, .mp3) is only to be known. With that, those files can be decoded and raw digital 8-bit data can finally be sent to the hardware device. The hardware device can even be permanently mounted inside the PC with all the power supplies ($+12 \mathrm{~V},+5 \mathrm{~V}$, and -12 V) tapped from the system's SMPS.

Note: The complete source code consisting of Mplayer.cpp, Sounds.h, Global s.h, the executable file M player.exe, and a sample wave file are likely to be included in next month's CD (optional) accompanying EFY.

Program Listing

MPLAYER.CPP

\#nclude "Sounds.h"
void DisplayTip(char *string)
\{
text_info tinf;
if(str̄len(string)<75)
\{
gettextinfo(\&tinf);
textbackground(LIGHTGRAY);textcolor(RED); gotoxy(2,25);
for(int $\mathrm{i}=0 ; \mathrm{i}<75 ; \mathrm{i}+\mathrm{H})$ cprintf(${ }^{(")}$);
gotoxy (2,25);
cprintf(string);
textattr(tinf.attribute);
gotoxy(tinf.curx,tinf.cury);
\}

return;

\}
void Window(int x1,int y1,int x2,int y2,char
*caption,int BackCol,int TextCol)

\{

text_info tinfo;
int \bar{i}, j;
gettextinfo(\&tinfo);
textbackground(BackCol);textcol or(TextCol);
for $(j=y 1 ; j<=y 2 ; j++)\{$
gotoxy(x1,j);
for ($\mathrm{i}=\mathrm{x} 1 ; \mathrm{i}<=\mathrm{x} 2 ; \mathrm{i}++$)
cprintf(" ");
\}
gotoxy(x1+1,y1);
for ($i=x 1+1 ; i<=x 2-1 ; i++)$
cprintf("\%c",205);
gotoxy(x1+1,y2);
for $(i=x 1+1 ; i<=x 2-1 ; i++)$
cprintf("\%c",205);
for $(j=y 1+1 ; j<=y 2-1 ; j++)\{$
gotoxy(x1,j);
cprintf("\%c",186);
gotoxy(x2,j);
cprintf("\%c",186);
\}
gotoxy(x1,y1);cprintf("\%c",201);
gotoxy(x2,y1);cprintf(" "\%c",187);
gotoxy(x1,y2);cprintf("\%c",200);
gotoxy(x2,y2);cprintf("\%c",188);
if(caption!=NULL) \{
textcolor(WHITE);
gotoxy($\mathrm{x} 1+2, \mathrm{y} 1$);
cprintf("\%s",caption);
\}
textattr(tinfo.attribute);
return;
\}
void DrawScreen(void)
textbackground(LIGHTGRAY);textcolor(BLACK); clrscr();
Window(1,2,80,24,NULL,BLUE,WHITE);
gotoxy(1,1);cprintf(" File Effects Operation"); textcolor(RED);
gotoxy(3,1);cprintf("F");
gotoxy(12,1);cprintf("E");
gotoxy(24,1);cprintf("O");
textbackground(BLUE);textcol or(LIGHTBLUE);
gotoxy(3,10);cprintf(" ");
delay(75);
gotoxy(3,11);cprintf(" ");
delay(75);
gotoxy(3,12);cprintf(" ");
delay(75);
gotoxy(3,13);cprintf(" ");
delay(75);
gotoxy(3,14);cprintf(" ");
delay(75);
gotoxy(3,15);cprintf(" ");
delay(75);
gotoxy(3,16);cprintf(" ");
delay(75);
gotoxy(3,17);cprintf(" ");
return;
\}
void Menul nitialise(void)
\{
int i;
// The FILE menu option
Menu[MNU_FILE].nextMenu=MNU_EFFECT;
Menu[MNU_FILE].prevMenu=MNU_OPPERATION;
Menu[MNU_FILE].Child=FALSE;
Menu[MNU_FILE].num_items=4;
for ($i=0 ; i<4 ; i^{-}+$)
\{
Menu[MNU_FILE].Enabled[i]=TRUE;
Menu[MNU_FILE].subMenu[i]=NONE;
Menu[MNU_FILE].String[i]=(char *)malloc(15);
Menu[MNU_FILE].Tip[i]=(char *)malloc(50);
Menu[MNU_FILE].OptionI D[i]=1+i;
\}
Menu[MNU_FILE].Enabled[1]=FALSE;
$\operatorname{strcpy}\left(\&\left(M e n u\left[M N U _F I L E\right] . S t r i n g[0][0]\right)\right.$, "Open"); strcpy(\&(Menu[MNU-FILE].String[1][0])," "Save"); $\operatorname{strcpy}(\&(M e n u[M N U-F I L E] . S t r i n g[2][0]), "-") ;$
$\operatorname{strcpy}(\&(M e n u[M N U-F I L E] . S t r i n g[3][0]), " E x i t ") ;$
strcpy(\&(Menu[MNU_FILE].Tip[0][0]),"Open the
strcpy(\&(Menu[MNU_FILE].Tip[1][0]),"Save as a *.wav file"); strcpy(\&(Menu[MNU_FILE].Tip[2][0]),", "); strcpy(\&(Menu[MNU-FILE].Tip[3][0]),"Quit the program");
Menu[MNU_FILE].AtX=Z;Menu[MNU_FILE].AtY=2;
// The EFFECT menu option
Menu[MNU_EFFECT].nextMenu=MNU_OPERATION;
Menu[MNŪ_EFFECT].prevMenu= $\bar{M} N U _F I L E ;$
Menu[MNU_EFFECT].Child=FALSE;
Menu[MNU-EFFECT].num_items=5;
for ($\mathrm{i}=0 ; \mathrm{i}<5 ; \mathrm{i}+\mathrm{+})$
\{
Menu[MNU_EFFECT].Enabled[i]=FALSE;
Menu[MNU_EFFECT].subMenu[i]=NONE;
Menu[MNU_EFFECT].String[i]= (char*)malloc(15);
Menu[MNU_EFFECT].Tip[i]=(char *)malloc(50);
Menu[MNU_EFFECT].OptionI D[i] $=11+\mathrm{i}$;
\}
strcpy(\&(Menu[MNU_EFFECT].String[0][0]),"Fade In");
strcpy(\&(Menu[MNU_EFFECT].String[1][0]),"Fade Out");
strcpy(\&(Menu[MNU EFFECT].String[2][0]),"-"); strqpy(\&(Menu[[MNU_EFFECT].String[3][0]),"Reverse"); strcpy(\&(Menu[MNU-EFFECT].String[4][0]),'Playback Rate");
strcpy(\&(Menu[MNU_EFFECT].Tip[0][0]), "Reduce volume with increasing time");
$\operatorname{strcpy}\left(\&\left(M e n u\left[M N U _E F F E C T\right] . T i p[1][0]\right]\right), " I n c r e a s e$ volume with increasing time");
$\operatorname{strcpy}(\&(M e n u[M N U-E F F E C T] . T i p[2][0]), " ~ ") ;$
strcpy(\&(Menu[MNU_EFFECT].Tip[3][0]),"'Reverse the wave file");
$\operatorname{strcpy}\left(\&\left(M e n u\left[M N U _E F F E C T\right] . T i p[4][0]\right)\right.$), $"$ Vary the Playnack Rate");
Menu[MNU_EFFECT].subMenu[0]=MNU_FADEIN; Menu[MNU_EFFECT].subMenu[1]=MNU_FADEEOUT; Menu[MNU_EFFECT].AtX=11;Menu[MNŪ_EFFECT].

AtY $=2$;
// The OPERATION menu option
Menu[MNU OPERATION].nextMenu=MNU FILE; Menu[MNU_OPERATION].preVMenu=MNU EFFFECT; Menu[MNŪ_OPERATION].Child=FALS̄E;
Menu[MNU_OPERATION].num_items=3;
for ($\left.\mathrm{i}=0 ; \mathrm{i}<3 ;{ }^{-}+\boldsymbol{+}\right)$
\{
Menu[MNU_OPERATION].Enabled[i]=FALSE;
Menu[MNU-OPERATION].subM enu[i]=NONE;
Menu[MNU_OPERATION].String[i]= (char*)malloc(15);
Menu[MNU_OPERATION].Tip[i]= (char*)malloc(50);

Menu[MNU_OPERATION].OptionID[i] $=21+\mathrm{H}$;

\}
strcpy(\&(Menu[MNU_OPERATION].String[OI[O]), 'Play');
strcpy (\& (Menu[MNU_OPERATION].String[1]
$[0]),{ }^{, *-") ;}$
strcpy (\&(Menu[MNU_OPERATION].String[2]
[0]),"Record");
strcpy(\&(Menu[MNU_OPERATION].Tip[0][0]),"Play
the file that was opened");
$\operatorname{strcpy}\left(\&\left(M e n u\left[M N U _O P E R A T I O N\right] . T i p[1]\right.\right.$ [0]), "");
$\operatorname{strcpy}(\&(M e n u[M N U \quad O P E R A T I O N] . T i p[2][0])$,
"Record sound through the microphone");
Menu[MNU OPERATION].AtX=23;Menu
[MNU_OPERATION].ATY =2;

// The FADE-IN menu option

Menu[MNU FADEIN].nextM enu=Menu [MNU FADEIN].prevMenu=NONE; Menu[MNU FADEIN].Child=TRUE;
Menu[MNU_FADEIN].num_items=2;
for ($\mathrm{i}=0 ; \mathrm{i}<2 ; \mathrm{i}^{-}+$)
\{
Menu[MNU_FADEIN].Enabled[i]=FALSE;
Menu[MNU-FADEIN].subMenu[i]=NONE;
Menu[MNU_FADEIN].String[i]=
(char *)malloc(15);
Menu[MNU_FADEIN].Tip[i]=(char *)malloc(50); Menu[MNU_FADEIN].OptionI D[i]=31+i; \}
strcpy(\&(Menu[MNU FADEIN].String[0][0]),"Linear"); $\operatorname{strcpy}\left(\&\left(M e n u\left[M \bar{N} U _F A D E I N\right] . S t r i n g[1][0]\right), "\right.$ Exponential");
$\operatorname{strcpy}(\&$ (Menu[MNU_FADEIN].Tip[0][0]),"Apply
Linear attenuation or amplification");
$\operatorname{strcpy}\left(\&\left(M e n u\left[M N U _F A D E I N\right] . T i p[1][0]\right]\right), " A p p l y$
Exponential attenuation or amplification");
Menu[MNU FADEIN].AtX=33;Menu
[MNU_FADEIN].ATY=2;

// The FADE-OUT menu option

Menu[MNU_FADEOUT].nextM enu=M enu [MNU_FADEOUT].prevMenu=NONE;
Menu[MNU FADEOUT].Child=TRUE;
Menu[MNU-FADEOUT].num_items=2;
for ($\mathrm{i}=0 ; \mathrm{i}<2 ;{ }^{-1}+$)
\{
Menu[MNU_FADEOUT].Enabled[i]=FALSE;
Menu[MNU-FADEOUT].subMenu[i]=NONE;
Menu[MN̄ _FADEOUT].String[i]= (char *)malloc(15);
Menu[MNU_FADEOUT].Tip[i]= (char*)malloc(50);
Menu[MNU FADEOUT].OptionI D[i]=41+i;
\}
$\operatorname{strcpy}\left(\&\left(M e n u\left[M N U _F A D E O U T\right] . S t r i n g[0][0]\right)\right.$, "Linear");
$\operatorname{strcpy}\left(\&\left(M e n u\left[M N U _F A D E O U T\right] . S t r i n g[1][0]\right)\right.$, "Exponential");
strcpy(\&(Menu[MNU_FADEOUT].Tip[0][0]),"Apply
Linear attenuation or amplification");
strcpy(\&(Menu[MNU_FADEOUT].Tip[1][0]),"Apply
Exponential at̄enuation or amplification");
Menu[MNU_FADEOUT].AtX=33;Menu
[MNU_FADEOUT].ATY=2;
\}
void RemoveMenu(int MenulD)
\{
int i,j;
textbackground(BLUE);textcolor(WHITE);
gotoxy(Menu[Menul D].AtX,Menu[Menul D].AtY); for ($i=0 ; i<30 ; i++)$ cprintf("\%c",205);
for $(i=1 ; i<=M$ enu[Menul $D]$.num_items $+2 ;$; + + $)$
\{
gotoxy(Menu[MenulD].AtX,Menu[MenulD].AtY +i);
for ($j=0 ; j<30 ; j++$) cprintf(${ }^{\prime \prime}$ ");
\}
return;
\}
int ShowMenu(int MenulD)
\{
MENU *menu;
int *subMenu;
int nextMenu, prevMenu;
char **String, **Tip;
int *Optionl D;
BOOL *Enabled;
char IsChild;
int num items;
int longLength,length;
int StartX,StartY;
int i,j;
int CurSelect=0,ch,RetVal;
menu=\&(Menu[MenulD]);
num items=menu->num items;
String=menu->String;
nextMenu=menu->nextMenu; prevMenu=menu->prevMenu; subM enu=menu->subMenu;
IsChild=menu->Child;
OptionID=menu->OptionID;
Tip=menu->Tip;
Enabled=menu->Enabled;
Start $X=$ menu- $>$ At X;
Start $Y=$ menu $->A t Y$
longLength $=$ Strlen(String[0]);
if(subMenu[0]!=NULL) longLength+=3;
for($\mathrm{i}=1$;idnum_items; $\mathrm{i}++$)
\{
length=strlen(String[i]);
if(subMenu[i]!:=NULL) length+=3;
if(length $>$ ongLength) longLength $=$ Iength; \}
textbackground(LIGHTGRAY);textcolor(WHITE);
for($\mathrm{i}=$ StartY; i -StartY +num items +2 ; i + +)
\{
gotoxy(StartX, i);cprintf(" ");
gotoxy(StartX + +ongLength $+5, \mathrm{i}$);cprintf(" ");
\}
StartX+
gotoxy(StartX,StartY);cprintf("\%c",218);

cprintf("\%c",191);
gotoxy(StartX, num_items+StartY +1); ;printe("\%cc",192);
for ($\mathrm{i}=0$; i ব ongLength $+2 ; \mathrm{i}++$) cprintf(${ }^{\text {"\% }} \mathrm{C}$ ",196);
cprintf("\%c",217);
for ($\mathrm{i}=0$; i isum_items; $\mathrm{i}++$)
\{
if(String[i][0]! $=-{ }^{-}$-)
\{
textcol or(WHITE);
gotoxy(StartX,StartY +i+1);cprintf("\%c ",179);
if(Enabled[i])
textcol or(BLACK);
else
textcol or(BROWN);
gotoxy(StartX +2 , StartY $+i+1$);
for ($\mathrm{j}=0 ; \mathrm{j}$ বongLength $+1 ; \mathrm{j}++$)
if($j<$ strlen(String $[i]))$
cprintf("\%c",String[i][j]);
else
cprintf(" ");
textcol or(WHITE);
cprintf("\%c",179);
\}
else
\{
textcolor(WHITE);
gotoxy(StartX,StartY +i+1);cprintf("\%c",195);
for ($\mathrm{j}=0$; j বongLength $+2 ; \mathrm{j}+\mathrm{+}$) cprintf("\%c",196);
cprintf("\% ${ }^{\prime \prime}$ ",180);
$\stackrel{\}}{\}}$
for (;
DisplayTip(Tip[CurSelect]);
textbackground(GREEN);
if(Enabled[CurSelect])
textcol or(BLACK);
else
textcol or(BROWN);
gotoxy(StartX +1 ,StartY +CurSelect+1);
cprintf(" ");
for ($\mathrm{j}=0 ; \mathrm{j}$ বongLength +1 ; $\mathrm{j}++$)
if(j <strlen(String[CurSelect]))
cprintf("\%c",String[CurSelect][j]);
else
cprintf(" ");
ch=getch();
if(ch $=0$) ch=getch();
$\mathrm{ch}+=300$;
switch(ch)
\{
case ESCAPE:
RemoveMenu(MenulD);
return(-1);
case ENTER:
RemoveM enu(MenulD);
if(Enabled[CurSelect] =TRUE)
return(Optionl D[CurSelect]);
else
return(-1);
case LEFT_ARROW:
if(IsChild=TRUE)
\{

RemoveMenu(MenulD); return(0);
\} else \{
if(prevMenu!=NONE)
RemoveMenu(Menul); return(ShowMenu(prevMenu));
\}
break;
case RIGHT ARROW:
if(subMenu[C̄urSelect]!=NONE)
\{
RetVal=ShowMenu(subMenu[CurSelect]);
if(RetVal!=0)
\{
RemoveM enu(Menul D);
return(RetVal);
\}
else
if(nextMenu! =NONE)
\{
RemoveMenu(MenulD);
return(ShowMenu(nextMenu));
\}
break;
case DOWN_ARROW:
textbackground(LIGHTGRAY);
if(Enabled[CurSelect])
textcolor(BLACK);
else
textcol or(BROWN);
gotoxy(StartX +1 ,StartY +CurSelect+1);
cprintf(" ");
for $(j=0 ; j$ dongLength $+1 ; j++)$
if(j<strlen(String[CurSelect]))
cprintf("\%c",String[CurSelect][j]);
else
cprintf(" ");
CurSelect+\#;
if(CurSelect =num items) CurSelect=0;
while(String[CurSēect][0] $={ }^{\prime}{ }^{\prime}$ ')
\{
if(CurSelect=num_items)
CurSelect=0;
else
CurSelect+;
\}
break;
case UP ARROW:
textbackground(LIGHTGRAY);
if(Enabled[CurSelect])
textcolor(BLACK);
else
textcolor(BROWN);
gotoxy(StartX+1,StartY +CurSelect+1);
cprintf(" ");
for $(j=0 ; j$ <ongLength $+1 ; j++)$
if(j <strlen(String[CurSelect]))
cprintf("\%c",String[CurSelect][j]);
else
cprintf(" ");
CurSelect-:
if(CurSelect <0) CurSelect=num_items-1;
while(String[CurSelect][0] $={ }^{-}{ }^{\prime}$ ')
\{
if(CurSelect<0)
CurSelect=num_items-1;
else
CurSelect-;
\}
break;
\}

\} void ButtonDisplay(int x1,int y1,char state char *caption)	ButtonDisplay(45,7,ENABLE_NOTACTIVE,"Cancel"); gotoxy(x, y); break;		
	case 1:		
text info tinfo;	setcursortype(NOCURSOR);		
gettextinfo(\&tinfo) int i;	ButtonDisplay(25,7,ENABLE_ACTIVE," Ok break;		
if(state==ENABLE_NOTACTIVE) textcolor	case 2:		
(YELLOW):	ButtonDisplay(45,7,ENABLE_ACTIVE,"Cancel");		
if(state=ENABLE ACTIVE) textcolor(WHITE); if(state=DISABLE) textcolor(LIGHTGRAY);	ButtonDisplay(25,7,ENABLE_NOTACTIVE " Ok ${ }^{\prime \prime}$);		
round(CYAN);	break;		
xy(x1,y1);cprintf(" \%s ",caption)			
etbackground(LIGHTGRAY);textcolor(YELLOW);	ch=getch();		
intf("\%c",220);	if(ch $=0)$ ch $=$ getch ($)+300$;		
gotoxy($\times 1+1, y 1+1$);for($=0 ;$; \ll ; $i+1)$ cprintf($" \% \chi^{\prime \prime}$ ",223);	ch+=300;		
textattr(tinfo atribute):	switch(ch)		
void ButtonPushed(int x1,int yl,char *caption)	case TAB:		
	Control $=(+$ Control $) \% 3$;		
text info tinfo;	break;		
tēextinfo(\&ti	case ESCAPE		
i;	setcursortype(_NOCURSOR);		
kground(LIGHTGRAY);textcolor(WHITE);	ButtonPushed($\overline{4} 5,7$, "Cancel");		
gotoxy(x1,y1);cprintf("	ch=1; Control=2;		
oxy(x1,y1+1);cprintf(" ");	break;		
xtbackground(CYAN);	case ENTER:		
oxy(x1+1,y1);cprintf(" \%s ",caption);	setcursortype(NOCURSOR ButtonPushed(25,7" Ok ")		
$\operatorname{taxy}(x]$	$\mathrm{ch}=1 ; \text { Control }=1 \text {; }$		
YELLOW);			
cprintf("\%c",220)	ca		
gotoxy(x1,y1+1);cprintf(" ");for(i=0;i<8;i++) cprintf("\%/\&",223);	if(Control $=2) \begin{array}{r}\text { \{ setcursortype(} \\ \text { ButtonPushed(} 45,7,{ }^{\prime} \text { "Cancel }\end{array}$		
textat	if(Control $=1$) \{ setcursortype(NOCURSOR);		
	ButtonPushed(25,7," Ok ");ch=1;\}		
BOOL DisplayDialog(cha	break;		
\{	case BACK SPACE: if(Control $=0$ \& \& i>0)		
int $x=29, y=5, i=0, N=0$			
char TempStr[40];Tem	gotoxy(-x,y);		
switch(mode)	cprintf(${ }^{\text {" }}$);		
case FILE_OPEN: Window(10,3,70,9, "Open File",LIGHTGRAY,YELLOW);break;	$\begin{aligned} & \text { TempStr[i] }=0 \text {; } \\ & \text { gotoxy(} 29,5) \text {; } \end{aligned}$		
case FILE_SAVE: Window(10,3,70,9,"Save	cprintf("\%s",TempStr		
HTGRAY,YELLOW);break;			
case PLAYBACK RATE: Window(10,3,70,9,"	break		
Playback Rate",LT̄GHTGRAY,YELLOW);break;	default:		
	ch-=300;		
ButtonDisplay (25,7,ENABLE_NOTACTIVE	if(ch 300 \& \& i $<$ N)		
Ok			
ButtonDisplay(45,7,ENABLE NOTACTIVE, "Cancel');	TempStr[i + +]=(char)ch;		
xtbackground(LIGHTGRAY);textcolor(YELLOW toxy(13,5);	TempStr[i]=0; gotoxy(29,5);		
if(mode=FILE_OPEN \\|	mode=FILE_SAVE)	cprintf("\%"s",TempStr);	
	x+;		
cprintf("Enter Filenam			
strcpy(TempStr,sFileN	bre		
	iff		
else			
\{	textbackground(BLUE);textcolor(WHITE); for(ch $=3 ; \mathrm{ch}<=9$;ch +)		
strcpy(TempStr,SPlayBackRate			
$\mathrm{N}=5$;	gotoxy (10,ch)		
	for ($\mathrm{i}=10 ; \mathrm{i}<=70 ; \mathrm{i}++$)		
textbackground(BLUE);textcolor(WHITE);	cprintf(${ }^{\text {("); }}$		
cprintf(" ${ }^{\text {a }}$ (${ }^{\text {a }}$) ;			
gotoxy(29,5);cprintf("\%s",TempStr)	if(Control $=1$)		
i $=$ strlen(TempStr);	\{ if(mode = IILE SAVE \\| mode=FILE OPEN)		
for (;)	strcpy(sFileName,TempStr);		
	if(mode=PLAYBACK_RATE)strcpy(sPlayBackRate,		
switch(Control)	- TempStr);		
	return(TRUE);		
_setcursortype(_NORMALCURSOR); textbackground(BLUE);textcol or(WHITE);	return(FALSE); \}		

void SetEnvVariables() \}
void SaveFile()\}
void main()
\{
int ch;
textbackground(BLACK);textcolor(LIGHTGRAY); clrscr();
setcursortype(_NOCURSOR);
DrawScreen();
Menul nitialise();
sFileName[0]=0;
strcpy(sPlayBackRate,"22400");
for(;;)
\{
DisplayTip("Ready");
ch =getch();
if(ch $=0$) ch=getch();
ch $+=300$;
switch(ch)
\{
case AltF:ch $=$ ShowMenu(MNU_FILE);break;
case AltE:ch=ShowMenu(MNU-EFFECT);break; case AltO:ch=ShowMenu(MNŪ_OPERATION); break;
\}
switch(ch)
\{
case FILE_EXIT:
ch=AltX;
break;
case FILE_OPEN:
if(DisplayDialog(FILE_OPEN))
if(mOpen())
\{
for(int $i=0 ; i<5 ; i++)$
Menu[MNU_EFFECT].Enabled[i]=TRUE;
Menu[MNU-OPERATION].Enabled[0]=TRUE;
for ($\mathrm{i}=0$; $\mathrm{i}<2 ; \mathrm{i}^{-}+$)
\{
Menu[MNU FADEIN].Enabled[i]=TRUE;
Menu[MNU_FADEOUT].Enabled[i]=TRUE;
\}
break;
case FILE SAVE:
/*if(DisplayDialog(FILE_SAVE))mSave();*/
break;
case FADEIN LINEAR:
FadeCommon(FADEIN,LINEAR);
break;
case FADEIN EXP:
FadeCommon(FADEIN,EXPONENTIAL);
break;
case FADEOUT LINEAR:
FadeCommon(FĀDEOUT,LINEAR);
break:
case FADEOUT_EXP:
FadeCommon(FĀDEOUT,EXPONENTIAL);
break;
case REVERSE:
ReverseWave();
break;
case PLAYBACK RATE:
if(DisplayDialog(PLAYBACK_RATE) $=$ FALSE)
SetPlayBackRate(0);
else
SetPlayBackRate(1);
break;
case PLAY:
mPlay();
break;
\}
if(ch =AltX)
\{
_setcursortype(_NORMALCURSOR);
textcol or(LIGHTGRAY);
textbackground(BLACK);
drscr();
printf("MPLAYER Ver.1.0 n");
printf("-——————— n");
printf("1 tM. Somasundaram - msoms@vsnl.coml n \tN.V.Venkatarayalu - v_rayalu@vsnl.com\ $n \backslash n$ n"); break;
\}
\#nclude "Globals.h"
IIIIIIIIIII Playback Sounds IIIIIIIIIIIIIII
void mPlay(void)
\{
FILE *fp;
unsigned char Sample;
clock t t1;
long $\mathrm{k}=0, \mathrm{t}=0, \mathrm{i}=0$;
fp=fopen("test.aud","rb");
t1=clock();
while(clock()-t1<18.2)\{
if(k <RateOfPlayBack)\{
fgetc(fp);
outp(0x37a,0);
if(feof(fp)) break;
$\mathrm{t}+\mathrm{H} ;$
k+i; $\}$
i=k/(RateOfPlayBack+2000);
$\mathrm{k}=0$;rewind(fp);
t1=clock();
while(clock()-t1<18.2) \{
if(k\% $=0)\{$
fgetc(fp);
outp(0x37a,0);
if(feof(fp)) break;
t+;
\}
if(k>0) $k=k$;
k+i; $\}$
$i=k /($ RateOfPlayBack+2000);
$\mathrm{k}=0 ; \mathrm{t}=0$;rewind(fp);
while(feof(fp)=FALSE)
\{
t1=clock();
if(k\%i=0) \{
Sample=(unsigned char)fgetc(fp);
outp(DATA OUT,Sample);
t+; ;
k+;
\}
fclose(fp);
outp(DATA_OUT,0);
\}
I/I|||||||||| Fade Common Function /|||||||||||||||
void FadeCommon(char far InOrOut,char far Туре)

\{

FILE *fp, *fpt;
long double i;
long double step;
long double attn1
fp=fopen("test.aud","rb");
fpt=fopen("tmp.aud","wb");
step=1.0/N oSamples;
if(InOrOut =FADEIN)
attn1 $=0$;
else
\{
attn1=1;
step=step;
\}
if(Type= LINEAR)
for ($\mathrm{i}=0.0 ; \mathrm{i}$ < N oSamples; $\mathrm{i}+\mathrm{+}$)
\{
attn1+=step;
fputc(128+(unsigned char))((long double))(fgetc(fp)128)*attn1),fpt);

\}

else
for ($\mathrm{i}=0.0 ; \mathrm{i}$ - N oSamples; $\mathrm{i}+\mathrm{H}$)
attn1=exp(i*step)
fputc(128+(unsigned char))((long double))(fgetc(fp)-
128)*attn1),fpt);
fclose(fpt);
fclose(fp);
unlink("test.aud");
rename("tmp.aud","test.aud");
\}

void ReverseWave(void)
V
FILE *fp, *fpt;
Iong double i;
fp=fopen("test.aud", "rb");
fpt=fopen("tmp.aud","wb");
for ($\mathrm{i}=0.0$; i < NoSamples; $\mathrm{I}+\mathrm{H}$)
\{
fseek(fp,-(long)i,SEEK END);
fput(fgetc(fp),fpt);
\}
fclose(fpt);
fclose(fp);
unlink('test.aud"):
rename("tmp.aud","test.aud");
\}
I/IIIIIIIIIII|| Set Playback rate /IIIIIIIIIIIII
void SetPlayBackRate(long rate)
\{
if(rate<65535)
\{
if(rate! $=0$)
\{
rate=atol (sPlayBackRate);
RateOfPlayBack=rate;
\}
ultoa(RateOfPlayBack,SPlayBackRate,10);
\}
return;
\}
IIIIIII Open a wav file and set parameters /IIIIII
BOOL mOpen(void)
\{
void DisplayTip(char *);
int TYPE OF OUTPUT=MONO OUTPUT;
FILE *fsource, *fdest;
fsource=fopen(sFileName, "rb");
if(fsource! =NULL)
\{
fdest=fopen("test.aud","wb");
RIFF riff;
WAVE wave;
DATA data;
fread(\&riff,sizeof(riff),1,fsource);
fread(\&wave,sizeof(wave),1,fsource);
fseek(fsource,20+wave.fmt.fLen,SEEK_SET);
fread(\&data,sizeof(data), 1,fsource);
if(strncmpi(data.dl D,"FACT",4) $=0$) \{
fseek(fsource,data.dLen,SEEK_CUR);
fread(\&data,sizeof(data),1,fsource);
\}
if!(strncmpi(riff.rID, "RIFF",4) $=0$ \& \& strncmpi (wave.wID,"WAVE",4) $=0$ \& \& strncmpi(data.dID, "DATA",4) $=0$ \&\& strncmpi(wave.fmt.fID,"fmt
$", 4)=0 \& \&$ wave.fmt.wFormatTag $=P C M \& \&$
\{
printf(") a");
DisplayTip("Unrecognizable Format -Not PCM 8-bit.");
return FALSE;
\}
unsigned long dlen=data.dLen;
char array[6];int arrayi[6];
int nChannels=wave.fmt.nChannels;
SamplingF requency $=$ PBR $=$ RateOfPlayBack $=$ wave.fmt.nSamplesPerSec;
ultoa(RateOfPlayBack,sPlayBackRate,10);
NoSamples=(dlen/nChannels)*TYPE_OF_

OUTPUT;dlen=NoSamples;
BOOL bits16=FALSE;
if(wave.fmt.FormatSpecific=-BITS16) bits16=
TRUE;
if(bits16=FALSE)
while(dlen >0)
\{
fread(array,1,nChannels,fsource);
switch(nChannels)
\{
case 1: fputc((int)array[0],fdest);
if(TYPE_OF_OUTPUT =STEREO_OUTPUT)
fputc((int) array[0],fdest);
break;
case 2: fputc((int)array[0],fdest);
if(TYPE OF OUTPUT \Longrightarrow STEREO OUTPUT) fputc((int)array[1],fdest);
break;
case 3: fputc((int)array[0],fdest);
if(TYPE_OF_OUTPUT =STEREO_OUTPUT)
fputc((int) array[1],fdest);
break;
case 4: fputc((int)array[0],fdest);
if(TYPE_OF_OUTPUT \Longrightarrow STEREO_OUTPUT) fputc((int)array[2],fdest);
break;
case 6: fputc((int)array[1],fdest);
if(TYPE_OF_OUTPUT \Rightarrow STEREO_OUTPUT)
fputc((int)array[4],fdest);
break;
\}
dlen-;
\}
else
\{
NoSamples/=2;
dlen=NoSamples;
while(dlen>0)
\{
fread(arrayi,2,nChannels,fsource);
switch(nChannels)
\{
case 1: array[0]=(char)((long)(arrayi[0]+ 32768)*255/65535);
fputc((int)array[0],fdest);
if(TYPE_OF_OUTPUT =STEREO_OUTPUT)
fputc((int) array[0],fdest);
break;
case 2: \quad array[0]=(char)((long)(arrayi[0]+ 32768)*255/65535);
fputc((int)array[0],fdest);
if(TYPE_OF_OUTPUT \Longrightarrow STEREO_OUTPUT) \{
array[1]=(char)((long)(arrayi[1]+32768)*255/
65535);
fputc((int)array[1],fdest);
\}
break;
case 3: $\quad \operatorname{array[0]=(char)((long)(arrayi[0]+}$ 32768)*255/65535);
fputc((int)array[0],fdest);
if(TYPE_OF_OUTPUT $\left.\Longrightarrow S T E R E O _O U T P U T\right)$ \{
array[1]=(char)((long)(arrayi[1]+32768)*255/
65535);
fputc((int)array[1],fdest);
\}
break;
case 4: array[0]=(char)((long)(arrayi[0]+ 32768)*255/65535);
fputc((int)array[0],fdest);
if(TYPE_OF_OUTPUT \Longrightarrow STEREO_OUTPUT) \{
array[2]=(char)((long)(arrayi[2]+32768)*255/
65535);
fputc((int)array[2],fdest);
\}
break;
case 6: array[1]=(char)((long)(arrayi[1]+ 32768)*255/65535);
fputc((int)array[1],fdest);
if(TYPE_OF_OUTPUT=STEREO_OUTPUT) \{
array[4]=(char)((long)(arrayi[4]+32768)*255/ 65535);
fputc((int)array[4],fdest);
\}
break;
\}
dlen-;
\}
fclose(fsource);
fclose(fdest);
return TRUE;
\}
else
\{
printf("\ a");
DisplayTip("The file is not available!");
return FALSE;
\}
\}

GLOBALS.H

\#nclude <stdio.h>
\#include <dos.h>
\#nclude <process.h>
\#nclude <conio.h>
\#nclude <string.h>
\#nclude <math.h>
\#include <stdlib.h>
\#nclude <ime.h>
\#define FALSE 0
\#define TRUE 1
\#define ENABLE ACTIVE 1
\#define ENABLE_NOTACTIVE 2
\#define DISABLE 0
\#define NONE -1
\#define MNU_FILE 0
\#define MNU-EFFECT 1
\#define MNU_OPERATION 2
\#define MNU ${ }^{-}$FADEIN 3
\#define MNU-FADEOUT 4
\#define FILE_OPEN 1
\#define FILE-SAVE 2
\#define FILE EXIT 4
\#define FADEIN LINEAR 31
\#define FADEIN EXP 32
\#define FADEOŪT_LINEAR 41
\#define FADEOUT EXP 42
\#define REVERSE 14
\#define PLAYBACK_RATE 15
\#define PLAY 21
\#define RECORD 22
\#define AItE 318
\#define AltF 333
\#define AltO 324
\#define AItX 345
\#define LEFT ARROW 375
\#define RIGHT ARROW 377
\#define UP ARROW 372
\#define DOW̄WN_ARROW 380
\#define ESCAPE 327
\#define ENTER 313
\#define SPACE 332
\#define BACK SPACE 308
\#define TAB $3 \overline{0} 9$
\#define PCM 1
\#define IN 0
\#define OUT 1
\#define LINEAR 0
\#define EXPONENTIAL 1
\#define FADEIN 0
\#define FADEOUT 1
\#define DATA OUT 0x378
\#define BITS16 16
\#define BITS8 8
\#define STEREO OUTPUT 2
\#define MONO OUTPUT 1
typedef char BŌOL;
typedef struct\{
char rID[4];
unsigned long rLen;
\}RIFF;
typedef struct $\{$
char fID[4];
unsigned long fLen;
unsigned int wFormatTag;
unsigned int nChannels;
unsigned long nSamplesPerSec;
unsigned long nAvgBytesPerSec;
unsigned int nBlockAlign;
unsigned int FormatSpecific;
\}FORMATCHUNK;
typedef struct\{
char wID[4];
FORMATCHUNK fmt;
3WAVE;
typedef struct\{
char dlD[4];
unsigned long dLen;
\}DATA;
struct MENU
\{ int subMenu[10];
char *Tip[10];
char *String[10];
int OptionlD[10];
BOOL Enabled[10];
int num items;
char Child;
int AtX,AtY;
int nextMenu;
int prevMenu;
\} Menu[5];
long RateOfPlayBack=15000,PBR;
long double NoSamples=76455;
double SamplingFrequency=44000;
char sFileName[40];
char sPlayBackRate[6];

STEPPER MOTOR DRIVER

PIYUSH P. TAILOR

Stepper motors are widely used where precision and accuracy are the primary considerations during rotation or positioning. Microprocessors or microcontrollers are often employed for
(IC1) with decoded outputs is used here as a sequence generator (similar to the running-light effect). As we need only four outputs, the fifth output (pin 10) is connected to the RESET pin (pin 15). The
mon terminal to the ground. Now give the lowest possible supply (3 V) and check for correct sequence of the remaining three terminals, using trial-and-error method for the maximum six combinations/possibilities. At correct sequence, the motor would rotate in either clockwise or anti-clockwise direction.

To use external clock pulses, simply disconnect pin 14 of CD4017B from pin 8 of CD4069B and then connect external clock pulses to pin 14 of CD4017B. Each controlling their operation. But it may not always be convenient or necessary to use microcontrollers, as it would make the gadget unnecessarily costlier.

Here is a simple and lowcost circuit to drive a stepper motor on full power for any number of whole steps. The present circuit is intended
to drive four-winding stepper motors, but one can easily modify it for other types.

The popular decade counter CD4017

TABLE I Half-Power Operation				
Step	Supply to coils			
number	A	B	C	D
1	On	Off	Off	Off
2	Off	On	Off	Off
3	Off	Off	On	Off
4	Off	Off	Off	On
5	Repetition	On	Off	Off
\mid	Off			
		\mid	\mid	\mid

TABLE II Full-Power Operation				
Step number	A	pply B	coils C	D
1	On	On	Off	Off
2	Off	On	On	Off
3	Off	Off	On	On
4	On	Off	Off	On
5 Repetition	On	On	Off	Off
$1!$				1

four outputs, in conjunction with four npn power transistors, function as half-power full-step drivers. In order to get full power, eight diodes ($8 \times 1 \mathrm{~N} 4148$) are used. Truth Table I depicts the half-power operation, while truth Tablell depicts the full-power operation.

The use of hex inverter IC2 (CD4069) gives two benefits:

1. The inversion through NOT gates allows the use of pnp power transistors ($4 \times$ BD140), which make it possible to ground the common terminal of the motor. This is useful in many applications.
2. The two unused inverter gates (N1 and N2) are handy to use as clock generator, in conjunction with preset VR1 and capacitor C1. Varying the preset allows the change in clock frequency and hence the speed of the motor.

If one does not know the sequence of motor terminals to be connected to terminals A through D of the circuit, then first connect any one terminal of motor to terminal A of the circuit and connect com-
pulse drives the motor by one step, which may normally be 1.8° or 3.6°, as shown on the label plate of the motor.

To reverse the direction of rotation, one should interchange terminals A with B and C with D simultaneously.

The colours of motor terminal wires, shown in the diagram, are those of the stepper motor used in head-drive of a 1.2MB floppy disk drive unit, operating on 12 V with a 3.6% step, which the author has used in his prototype.

Notes: 1. Heat-sinks may not be required for the power transistors.
2. Cost of the circuit is less than Rs 100.
3. Supply voltage for the circuit is equal to the operating voltage of the motor (i.e. between 3 V and 12 V).
4. RPM of motor $=\frac{\mathrm{fxd}}{6}$, where f is the frequency of clock pulses and d the angular displacement in degrees per step.

EIECTRONIC DIGITAL TACHOMETER

ADITYA U. RANE

Tachometer is nothing but a simple electronic digital transducer. It finds many applications in our
stripe is pasted on the rotating part of the machinery. The reflected light from the contrasting stripe falls on the junc-
stage consists of a digital counter based on 4-digit counter IC 74C926. When light from any source falls on junction of the infrared module, its output goes low. This output is connected to pin 2 of NE555 (configured as a monostable) to trigger it.

The output pulses from pin 3 are connected to dock pin 12 of 74C926. Hence, on receipt of every pulse, the count of IC 74C926 increments by one. For checking the revolutions in a predetermined time period, a stopwatch may be used. Before counting starts, depress reset switch S1

day-to-day life.
Normally, a tachometer is used for measuring the speed of a rotating shaft, gear, or a pulley. A tape or a contrasting

Fig. 2: Power supply regulator

sharp pulses for every revolution.

Apart from counting the revolutions of a moving object, the circuit can also be used for counting the objects on a conveyer belt.

The basic digital tachometer circuit consists of two stages. The first stage is a simple monostable, wired around IC NE555. The second
and release it as soon as counting is to start. At the instant when counting is to end, one should immediately withdraw either the sensor module or switch 'off' the light source to see the final reading (revolutions) on the display. Accuracy will be better if the counting period is comparatively larger.

The 74C926 is basically a 4-digit counter module, which can count from 0000 to its maximum possible value of 9999. It can be operated with V_{cc} of 3 to 15 volts. Here, regulated 5 -volt supply is

Fig. 5: Use of contrasting stripe
used for the entire circuit. The circuit shown in Fig. 2 employs 7805 regulator. This 4-digit counter can be readily interfaced to many circuits such as clock-frequency meter, digital voltmeter, tachom-

The chip 74C926 pulls its carry output (pin 4) 'high' when the counter reaches 6,000 . This output can be suitably used in clock circuits for resetting; for example, if the dock input is 100 Hz per second, the carry output will be available every minute. However, here we are not using the carry output.

There are different versions of 4-digit counter modules for different applications. For example, in 74C927, the second most significant digit gets divided by 6 , rather than 10. Similarly, in 74C928, the most significant digit gets divided by 2 , rather than 10 , and its carry output goes 'high' at the count of 2000, and 'low' only when the re set switch is pulled 'high'.

Figs 3 and 4 show the applications of the electronic digital tachometer. Basic principle in both these applications is the same.
eter (as explained here), stop watch, etc. A reset switch is connected between pin 13 and $V_{c c}$.

The important factor is that maximum reflected light from the contrasting stripe should fall on the IR detector, i.e. $\theta 1$

Fig. 7: IR light source
should be equal to $\theta 2$. The other important thing is that the contrasting stripe may be a mirror with a small piece of tape pasted on it, as shown in Fig. 5.

Fig. 6 shows another application of the same circuit for counting the objects moving over a conveyer belt. The only difference between applications shown in Figs 3, 4, and 6 is that in the first two applications, one requires a contrasting stripe, whereas in case of Fig. 6, one requires a light source and a sensor module which are kept on the opposite sides of the conveyer belt.

When there is no object between the source (light) and the sensor module, one gets a continuous pulse at the output pin 3 of monostable IC NE555. But as soon as the object on moving conveyer belt obstructs the light path, the output of NE555 goes 'low'. Since output pin 3 of NE555 is connected to the clock input pin 12 of 74C926, the number of objects get counted continuously-up to 9999, using a single 74C926. A simple IR light-source circuit is shown in Fig. 7.

The total cost of fabrication of the complete circuit is approximately Rs 250.

LIGHT-OPERATED LIGHT SWITCH

PRADEEP G.

Here is a light-operated, remotecontrolled solidstate switch to operate a lamp. During darkness, the resistance of LDR shoots up to megohm range. Thus, the triac does not get gate drive and hence it does not conduct.

When LDR is illuminated by means of a torch-light beam, the resistance of LDR suddenly decreases (below 10-kiloohm). This causes the triac to conduct and switch 'on' the lamp. Light received

from the lamp (not from the torch) keeps LDR's resistance low. So, the lamp remains continuously 'on'. Once the lamp is 'on', it can be switched 'off' again by interrupting the light falling on LDR, by either waving hand in front of it or by interrupting power supply to the circuit for a moment.

RFC employed here can be made by winding about 15 turns of 18 SWG wire over an insulated ferrite rod.

PREEISION DIEITAL AC POWER CONTROLLER
 PRATAP CHANDRA SAHU

SCRs and Triacs are extensively used in modern electronic power controllers-in which power is controlled by means of phase angle variation of the conduction period. Controlling the phase angle can be made simple and easy if we set different firing times corresponding to different firing angles. The design given here is a synchronised program-
one divides the angle described during one complete cycle of the sinewave $\left(2 \pi=360^{\circ}\right)$ into equal parts, then time period T of the wave will be divided into identical equal parts. Thus, it becomes fairly easy to set the different programmable timings synchronised with the AC mains sinewave at zero crossing. The main advantage of such an arrangement, as al-

ready mentioned earlier, is that only the firing time has to be programmed to set different firing angles. It is to be noted that the more precise the timer, the more precise will be the power being controlled.

In this circuit, the time period of mains waveform is divided into 20 equal parts. So, there is a time interval of 1 ms between two consecutive steps. The sampling voltage is unfiltered full-wave and is obtained from the diode bridge at the output of the power transformer. The timer is reset at every zero crossing of full wave and set again instantly for the next delay time. This arrangement helps the timer to be set for every half of mains wave - when the positive half of the mains waveform starts building up, the timer is set for that half and as it begins to cross zero, it gets reset and set again for negative half, when the negative half begins to build up. The process is repeated. Here, instead of using two zero crossing detectors-one for each half of mains wave-a single detector is used to perform both the functions. This is possible because the sampling wave for negative half is inverted by the rectifier diode bridge.

The 18V AC from power transformer is fed to the four diodes in bridge configuration, followed by the filter capacitor which is again followed by a three-terminal voltage regulator IC LM 7812. The voltage so obtained drives the circuit. The unfiltered voltage is isolated from the filter capacitor by a diode and is fed to zener diode D8, which acts as a clipper to dip voltage above 6 volts.

This voltage is fed to the
mable timer which achieves this objective.

The following equation for a sinewave shows how firing time and the phase angle are related to each other:

$\theta=2 \pi \mathrm{ft}$ or $\theta \propto \mathrm{t}$

Here, θ is the angle described by a sinewave in time t (seconds), while f is the frequency of sinewave in Hz . Time period T (in seconds) of a sinewave is equal to the reciprocal of its frequency, i.e. $T=1 / f$.

The above equation indicates that if

Fig. 2: 1 kHz clock
base of transistor T1, which is wired as zero crossing detector. When base voltage reaches the threshold, it conducts. It thus supplies a narrow positive pulse which resets the timer at every zero crossing.

A 32.768 kHz crystal is used to get stable output of nearly $1 \mathrm{kHz}(1,024 \mathrm{~Hz})$ frequency after five stages of binary division by an oscillator-cum-divider IC CD4060. The 32.768 kHz crystal is used because it can be found in unused

Fig. 3: Load current waveforms
quartz clocks and is readily available in the market. But use of a 1 kHz crystal using a quadNAND IC CD4093 as clock generator, as shown in Fig. 2, is better as it provides the exact time interval required. In that case, CD4060 oscillator/divider is not required.

The CD4017B counter-cumdecoder IC then divides this 1 kHz signal into ten equal intervals, which are programmed via the single-pole, 10-way rotary switch. Once the delayed output
reaches the desired time interval, the corresponding output of CD4017 inhibits the counter CD4017 (via pole of rotary switch and diode D6) and fires the Triac. Transistor T2 here acts as a driver transistor. The reset pin of 4017 is connected to zero crossing detector output to reset it at every zero crossing. (The load-current waveforms for a few positions of the rotary switch, as observed at EFY Lab, are shown in Fig. 3.)

The circuit can be used as power controller in lighting equipment, hot-air oven, universal single-phase AC motor, heater, etc.

LUGGAGE SECURITY SYSTEM

DHURJATI SINHA

Wile travelling by a train or bus, we generally lock our luggage using a chain-and-lock arrangement. But, still we are under tension, apprehending that somebody may cut the chain and steal our luggage. Here is a simple circuit to alarm you when somebody tries to cut the chain.

Transistor T1 enables supply to the sound generator chip when the base current starts flowing through it. When the wire (thin enameled copper wire of 30 to 40 SWG, used for winding transformers) loop around the chain is broken by somebody, the base of transistor T1, which was earlier tied to positive rail, gets opened. As a result, tran-
sistor T1 gets forward biased to extend the positive supply to the alarm circuit. In idle mode, the power consumption of the circuit is minimum and thus it can be used for hundreds of travel hours.

To enable generation of different
alarm sounds, connections to pin 1 and 6 may be made as per the table.

Select 1 (Pin6)	Select 2 (Pin1)	Sound effect
X	X	Police siren
$V_{D D}$	X	Fireengine siren
$V_{S D}$	X	Ambulance siren
${ }^{\text {SIS }}$	$\mathrm{V}_{D D}$	Machine-gun sound

Note: $X=$ no connection; "-" = do not care

June

PORTABIL OZONE GENERATOR

K PADMANABHAN, S ANANTHI AND KIRIT PATEL

This article is dedicated to the good health of EFY readers in the year 2000 and beyond. It describes an ozone generator for portable (and portablel) use.

Ozone gas is now-a-days used for treatment of drinking water, disinfection, and air-purification. What one requires is a small and handy unit to be plugged into mains to get ozonated air at suitable pressure flowing out from a tube It can then be let into environment or bubbled through water or any other polluted liquid. But the gadget must be completely safe to work with.

Ozone generators invariably make

Fig. 1: Airflow through cylindrical space of discharge tube
use of a discharge tube to which a high electric field is applied so as to break down the oxygen present in the air. This phenomenon occurs at or near a field strength of $25 \mathrm{kV} / \mathrm{cm}$, and the resulting discharge that takes place is known as corona. The corona has a light bluish glow. It is in this corona field that oxygen becomes ozone (O3).

Ozone has tendency to revert back to its original form in about 10-20 minutes, in the atmosphere. Therefore, it is necessary in any ozone application to generate ozone as and when requied for use since it cannot be kept stored the way chlorine is stored (in cylinders). Chlorine is used in our cities to disinfect drinking water supply. It is highly carcinogenic because when it comes into contact with remnants of pesticides in our foodstuff (vegetables), it generate halomethanes, which
are carcinogenic. That is why, ozone is used today in preference to chlorine.

Complete disinfection of water, in any impure form, is realised with an ozone content of $4 \mathrm{mg} / \mathrm{litre}$. Ozone generator presented here has a capacity of producing $10 \mathrm{mg} / \mathrm{minute}$ of ozone combined with atmospheric air. This unit can treat five litres of impure water in just two minutes.

The discharge tube is supplied air from an air-group, which is built into the unit. The unit produces ozonated air at a pressure head of $15-20 \mathrm{~cm}$ of water via its outlet. So the exit tube can be let into water containers with water up to a level of $10-15 \mathrm{~cm}$.

Another advantage of this unit is that it is light in weight (less than a kilogram) and carries a very simple control and a microammeter showing the ozone concentration. It employs a high voltage of over 5 kV at a high frequency of 15 kHz to 20 kHz , which would not cause a lethal shock. Shock voltages are not cause a lethal shock. Shock voltages are not dangerous at these high frequencies, while at 50 Hz these high voltages are quite dangerous.

Commercial ozone generators make use of mains 50 Hz frequency and are thus very dangerous while assembling. Extreme care is required to be exercised by the user while diagnosing any problem with such apparatus. Ozone generator at the higher frequencies used here

Fig. 2: Schematic Diagram of portable ozone

Fig. 3: Actual-size, single-sided PCB layout

Fig. 4: Component layout for the PCB

Metering circuit
is more efficient and silent in its discharge. One can easily assemble this portable ozone generator in a plastic breadbox (used for storing one full bread), which is all insulated(with no exposed metal parts) The cost of making a simple unit is much less than Rs 1,000 .

The air pump used in this project is an aquarium pump which costs less than Rs 100. This pump works on mains and has a 50 Hz vibrator attached to a rubber bellows that provides a pulsating airflows that provides a pulsating airflow. This air flows through the cylindrical space of discharge tube as shown in Fig.1. The discharge tube outlet gives ozonated air.

The circuit as shown in Fig. 2 generates a controlled high-frequency AC voltage of above 5 kV . The circuit has been designed such that all components used in the circuit are economical and freely available from TV spares shops.

The single-sided, actual-size PCB layout for the complete circuit and its component layout are shown in Figs 3 and 4 respectively. The entire assembly of the unit-including the air pump, discharge tube, circuit board, and the fusecan be comfortably fitted within th breadbox, as shown in Fig.8. Because of this compact packaging, no mains transformer (which is generally heavy) is employed. The unit should not be touched after its assembly in the breadbox, nor should its lid be opened after plugging into the mains.

Lab note: During practical testing of the circuit at EFY Lab, an auto-transformer for stepping down the mains voltage to about 120 V AC had to be used to avoid build-up of excessively high volt-age-greater than 30 kV peak. At AC input voltage greater than 160V (RMS), overheating of resistors (paralle combination of resistors R13 and R14) in series with the primary of EHT winding
was also noticed.

The circuit

Pulse generator. A simple pulse generator is realised using two CMOS integrated circuits. The CD4069 is a hex buffer, while CD4011 is a quad NAND gate. Two of the 4069 gates are used to generate $15-20 \mathrm{kHz}$ pulses. The frequency of this oscillator can be varied by 10-Kilo-ohm preset VR1 on the board. The width of the pulse can also be adjusted using preset VR2, but it is left at 33 per cent duty cycle. The circuit uses an RC (resistance-capacitance) feedback for generation of the square-wave oscillations. The 330pF capacitor C1 used here charges during one-half cycle through the 110 -ohm resistor R3 and the 1-kilo-ohm width-setting variable resistor VR2. During the other half, capacitor C1 discharges through 10k resistor R2 and the adjustable-frequency preset VR1. Diodes D1 and D2 differentiate between the two half cycles.

Note: In Fig. 2, the line joining resistor R1 to D1, D2, and the 3,300pF capacitor C1 represents a joint only and is not ground.

The second oscillator, shown in Fig. 2, also uses the gates from same IC CD4069. It is, however, wired using 0.1 uF capacitor C2, instead of the 330pF used in the former oscillator. The 1 k potmeter VR3 in the circuit is for ozone output control. This control is brought out, as shown in Fig. 8, for slightly varying the ozone output. This control is brought out, as shown in Fig. 8, for slightly varying the ozone output. This second oscillator works at around 2 kHz . Therefore when the outputs of the two oscillators are combined using the NAND gate N6 of CD4011 (IC2) and inverted by gate N7, one gets a modulated output of high and low frequencies. Such an excitation of the discharge tube has been found to be very efficient and less heat-producing as compared to a plain high-frequency or a plain low-frequency excitation.

The output pulse train from pin 11 of the CD4011 gate N7, which is of the same polarity after the second inversion (first inversion takes place in gate N6), is sent through the pair of complementary transistors T1 and T2 (2N2222 and 2N2907, respectively). These two buffer the signal for giving adequate charging current to drive the gate capacitance of

MOSFETs during the leading edges of the square wave.

The 15-ohm resistor R11 and switching diode D9 (1N914) are needed to prevent any negative signal input ot the power MOSFET IRF840 gate. The power MOSFET is a boon to switch-mode circuit operation. It looks like te 5 V regulator 7805 in TO-220 package, with which everyone is familiar. It needs a small aluminium heat-sink

Thedrain of the MOSFET is connected in series with a 33 -ohm, 10-watt wirewound resistor (replaced by EFY Lab with 2×47-ohm, 10W resistors R13 and R14, in parallel). It is then connected to EHT primary winding of the ferrite core line output transformer (LOT)-also referred to as EHT transformer. Switching diode BA159 is also placed in series with the primary, as shown in Fig. 2. The supply is the rectified DC voltage, which is derived form the mans voltage directly. (During testing at EFY Lab, the mains voltage was stepped down to 120 V AC as mentioned earlier.) An RC series network comprising 33 kpF (3000 V rating) capacitor C8 and 100-ohm (10W) resistor R12 is placed across drain-source terminal of the MOSFET. The source terminal of the MOSFET is directly grounded.

Low-voltage supply. The ICs 4069 and 4011, and transistors T1 and T2, require a low voltage of around 12 V . A separate $12 \mathrm{~V}, 250 \mathrm{~mA}$ transformer could also be used with a rectifier bridge and filter capacitor to derive the necessary voltage. But, in this compact design, the same is derived from mains using a capacitor and diode pair. The mains supply, through the series limiting resistor of 82ohm, 1W (replaced at EFY Lab, with a 10-kilo-ohm, 10W resistor R8) sends a current via $0.47 \mathrm{uF}, 400 \mathrm{~V}$ polyester capacitor (replaced at EFY Lab with two such capacitors C4 and C5 in parallel) and diode D8 to change 100uF capacitor C6 during positive half cycle. Zener diode D7, with a breakdown voltage of 12 V , limits the voltage across capacitor C6 to 12V. Diode D6 provides an easy path during negative half cycle of the AC input. The stable 12V DC supply developed across capacitor C6 is used for the ICs and transistors 2N2222 and 2N 2907.

Ferrite-core transformer. The ferrite core transformer used here is the commonly available B\&W television transformer, known as LOT (line output transformer). AT2070 type used int he
circuit has a high-voltage winding for the EHT of the picture tube. This EHT is connected to the electrode (aluminium foil) of the ozone discharge tube.

The LOT used should be two-limb type, i.e, the low-voltage windings should be on the left limb of the ferrite core, and the EHT winding (primary and secondary), which is generally epoxy potted, on the right limb. The LOT should have an external EHT diode and not an internally wired EHT diode, as is common in colour television LOTs. The reason being that only AC voltage is needed here.

Further, it is necessary to remove any coupling between the two limbs, which may be present in the LOT windings. A connection from the left limb to the right limb is used to increase the mutual coupling. In the circuit presented here that coupling leads to over-currents in the event of any discharge tube sparking, thereby damaging the IRF 840 instantly. It is therefore necessary to cut off the connection linking the two limb windings before installation. Preferably, a 1,00ohm, $2 \# \mathrm{~N}$ resistor may be wired in the place of this cut, if an improved performance of ozone generation is desired.

Lab. note. During testing of EFY Lab, transformer stamped as LOT 2070 obtained from the market was found to be single limbed and could generate about 34 kV peak voltage at 120 V AC input. Therefore a double-limbed Leader brand transformer 2095 was procured and used after removal of the encased TV20 rectifier diode, in a manner exactly as described by the authors. This transformer could produce about 30 kV peak with AC input of 120 V . The corona discharge across EHT secondary was prominent with an air-gap of up to 125 cm . At only 80V AC input to the circuit, 100pA space current was measured using the metering circuit described below.

The metering circuit (Fig. 5). This employs a simple low-cost 100uA meter used as VU-meter in audio amplifiers and is freely available. Either the edgemounting type or the plain type may be

Fig. 6: LED indicator circuit
used. It has a clear front plastic case of 25 sq. cm which is easily mounted on the front side of the plastic box, with a suitable
small cut made int he box with drill and fret saw.

The meter has a top which can be easily removed and replaced, as it is snug fit. Removal of the meter top exposes the meter scale, which can be redrawn in per cent of 0-1 gm/hour 03 .

The meter shows the discharge current through the ozone-generating tube The earth side of the discharge tube (aluminium tube) is connected through a 1-kilo-ohm, 1W resistor to ground. The EHT wire is connected to the electrode (aluminium foil) on top of the glass tube The 1-kilo-ohm resistor develops a voltage in approximate proportion to the ozone that would have been generated. A series combination of 4.7 -kilo0-ohm resistor and a diode (1N4001) supply current to the meter coil.

LED indicator (Fig. 6). The indicator LED on panel gets its current through a single turn wound on the top limb of the ferrite transformer. The current is rectified by a 1N4003 diode and filtered by a 10uF, 16V capacitor which supplies the current through 1-kilo-ohm series resistor to the LED. The glowing of the LED indicates that the circuit is working.

Lab. Note: At EFY Lab, about eight turns of insulated wire around top limb of LOT were used.

AC input. The AC mains supply is at 230 V AC and has a fuse of 500 mA in series. A switch can be wired in series with the same, though the same is not shown in the circuit here. (Please note that at EFY, 12 V AC input was used as mentioned earlier.)

Testing

Prior to operation of the circuit board for ozone generation, it is required to test the circuit properly. This can be done as follows:

1. The low-voltage pulse generation part has to be tested first. For this, in place of the mains-derived 12 -volt supply, a separate 12 V supply, derived using an external $12-0-12$ volts, 1 -amp transformer, and a 7812 voltage regulator, can be used. The two oscillators should have frequencies in the specified range and the presets should be able to adjust them over the range mentioned. Otherwise, slight alteration of resistor values may be needed. The 3300 pF capacitor used should be of good ceramic or polyester type, with a rating of 100 V or more.

PARTS LIST

Semiconductors:	
IC1 (N1-N5)	- CD4069 hex inverter
IC2 (N6-N7)	- CD4011 quad 2-input Nand gate
T1	- 2N2222 np transistor
T2	- 2N2907 pnp transistor
T3	- IRF840 n-channel MOSFET
D1-D4, D9	- 1N914 detector diode
D5-D6, D8, D11	- 1N4007 rectifier diode
D10	- BA159 switching diode
D7	- 12V, 1W zener
D12	- 1N4001 rectifier diode
D13	- Green LED
Resistors (all 1/4-watt, +_ 5\% carbon, unless stated otherwise):	
R1, R4	- 100-kilo-ohm
R2, R6, R10	- 10-kilo-ohm
R3	- 110-ohm
R5, R15, R17	- 1-kilo-ohm
R7	- 2.2-ohm, 10 watt fusible resistor
R8	- 10-kilo-ohm, 10-watt
R9	- 6.8-kilo-oh,m
R11	- 15-ohm
R12	- 100-ohm, 10-watt
R13, R14	- 47-ohm, 10-watt
	fusible resistor
R16	- 4.7-kilo-ohm
VR1	- 10-kilo-ohm preset
VR2	- 1-kilo-ohm preset
VR3	- 1-kilo-ohm potmeter
Capacitors:	
C1	- 3300pF ceramic disk
C2, C7	- 0.1uF ceramic disk
C3	- 100p, 400 V electrolytic
C4, C5	- 0.47uF, 400V polyster
C6	- 100uF, 35V electrolytic
C8	- $3.3 \mathrm{kpF}, 300 \mathrm{~V}$ polyster/
	mica
C9	- 10u, 16V electrolytic
Misel laneous:	
X1	- LOT 2070 EHT
	transformer (without
	EHT diode) or Leader
	brand LOT 2095 (diode
	to be removed)
	- Al tube, length $=20 \mathrm{~cm}$,
	diameter $=1 \mathrm{~cm}$
	- Glass tube, length $=$
	17 cm , diameter $=1.2 \mathrm{~cm}$
	- HT electrode
	- Aluminium full
	- M-seal, small packet
	- Teflon tape, two rols
	- Cork, two numbers
	- VU meter
	- Short glass tube
	- 1.5 cm length, dia $=5$
	mm, 2 numbers
	- Flexible polythene pipe 5 mm diameterm,
	pipe 5 mm diameterm, one metre length
	- Aquarium pump
F1	- Fuse, 500 mA
	DC IN socket

2. Then, using a CRO, the pulse train should be observed at the junction of two bipolar transistors. Next, MOSFET IRF 840 is connected in the circuit.
3. Now apply 12 V supply to the end
of the LOT winding, in place of the mains rectified 200 V DC, as shown in Fig. 2. For testing, one is not required to use 230 V directly at all. The same in Fig. 2. For testing, one is not required to use 230 V directly at all. The same 12 V , or the unregulated 12 V prior to the 7812 regulator, can be connected. In Fig. 2, the BA159 anode is shown connected to the mains rectified supply at the positive terminal of the $100 \mathrm{uF}, 400 \mathrm{~V}$ electrolytic capacitor. But, for the present, connect the unregulated 12 V (may be 16 V or slightly more) to the circuit at the anode of BA159.
4. After switching 'on' the supply, observe the voltage on the EHT winding, which comes from the LOT, on a DC multimeter kept at its maximum range (say, 500 or $1,000 \mathrm{~V}$ DC). The meter should show a deflection of above 500 V .
5. The presets in the circuit can be adjusted to tune the ferrite transformer, for this voltage to be a maximum. Then, adjust the 1-kilo-ohm potentiometer VR3 so that it shows the possibility of varying the voltage over a limited range, above a threshold value.
6. Now, the 12 V transformer supply can be disconnected. The 12 V low-voltage generation part has to be separately tested. For this, remove the connection to the LOT from the MOSFET. Also remove the CMOS ICs from sockets. Then, on the PCB, one can easily check for zener voltage of 12 V . If this voltage is less than 12 volts, adjust the value of 82 -ohm series resistor to a lesser value, say, 68-ohm.

Lab. note At EFY, this part of the circuit has been modified, and it is possible to get correct 12 V output at AC input voltage of 120 volts. Only the modified circuit is included in Fig. 2.

The circuit will ordinarily work even at 200 -volt mains, but not below that. The mains input can go up to 240 V , but not more.

Lab note. During testing it was observed that fusible resistors R13 and

R14, rated 10W, got red-hot if voltage was increased beyond 160 V AC.

Construction of the discharge tube (Fig. 7). A simple method for constructing the discharge tube is presented here, which is suitable for any hobbyist. An aluminium tube of 20 cm length and about 1 cm diameter is taken. Antenna scrap tube can be used, provided the same does not have kinks, bends, or burrs. Fig. 7 shows the construction of the discharge tube. This aluminium tube is blocked on the inside with a small amount of M-seal compound, so that no air can pass directly through its middle hole.

M-seal comes in a pack of two parts. The sealing compound is prepared as and when required, bu taking equal quantities of the two and mixing them together throughly. One of the compounds is black and the other is of cream colour. The two are taken, each about 1 cc , and then mixed will. This mixture is inserted into the tube with a pencil and spread to attach to the inside wall of the aluminium tube, blocking any air path. Then, two side holes of 2 mm diameter are made on the tube at the two ends, about 33 cm from each end. These holes can be on the opposite faces of the aluminium tube.

To provide the discharge gap, a thinwalled glass tube, commonly used as chemistry test tube, is required. It should have an inner diameter about 1.2-1.5 mm greater than thet of the aluminium tube, i.e., if a 10 mm outer dia aluminium tube is taken, a glass tube of 11.5 mm inner diameter should be used. This will ensure the best performance with an air gap of 0.75 mm all around. If the gap is 0.6 mm , it is still better, but then the metal tube should be extremely perfect.

The glass tube is cut such that it covers the length of the aluminium tube, except for about 1.5 cm at each end. Thus if a 20 cm long aluminium tube is taken, the glass tube will be 17 cm long. The metal tube should be able to go freely in it Now, the glass tube may be
rotated over a gas burner to soften the ends of the tube. It should now be made chamfered on to the metal tube, such that, at the edges, the glass tube fits the metal tube with no gap. Still, the glass tube should be able to slide over the aluminium tube.

After the glass tube is so positioned over the metal tube, the ends of the glass tube are taped using Teflon tape. The tube assembly, with the glass envelope taped, is held at its edge, leaving about 15 cm free at either end, and clamped to the wall of the plastic box, as shown in Fig. 8. Clamps meant for TV antennae, which are made of plastic mouldings, can be used for this purpose.

Preparation of the hot electrode. The hot electrode, to which a voltage greater than 6,000 volts is applied at high frequency, is made by closely wrapping plain aluminium foil around the outer side of the glass tube. The foil is wrapped leaving 1 cm uncovered area on either ends of the tube. The foil is to be taped for tightness on the outer glass, using cellulose tape, and a piece of Tefloninsulated wire connected to the aluminium foil brought out. This wire is connected to the EHT lead from the LOT on the circuit board.

Assembling the unit. The unit is easy to assemble. First, the circuit board is fixed on the bottom of the box with plastic bushes and screws. If screws are not needed externally, the bushes can be pasted on to the box. Then, clamps are fixed for discharge tube. Polythene tubes (transparent plastic) are fitted to the glass tube ends.

At the bottom of box, the air pump, with its outer plastic casing removed, is fixed to the bottom with a screw. The inside of the diaphragm pump is shown in Fig. 8. The casing of the pump is not needed for two reasons: to save space needed for fixing it within the bread box, and the vibrator part is now accessible. A small plastic sheet is fixed by applying

Fig. 7: Construction details of discharge tube glue (Araldite) to the vibrating armature, so that it serves as a simple fan for the inside. The mains supply is connected to the PCB in parallel with the supply to the air-pump.

But now this connection is removed and only the pump is made to work.

The end of the aquarium air-pump, which produces air under pressure, is connected by a s short length of tube to the corked glass tube of the discharge tube assembly. The other end of the tube is fixed to another similar polythene tube of adequate length (say, one metre).

Now, after allowing the air-pump to work, one must check whether there is adequate draft of air through the tube connected to the air-pump, without any leakage. Any air leakage prior to tube entry or through the Teflon tape seals, or through the inner metal tube, can be easily detected with figers or soap bubble test. The leaks have to be plugged and all air that comes out of the pump should go through the annular gap of the discharge path and exit through the outlet tube.

After this check, the meter connection is made from the board's 1-kilo-ohm shunt discharge resistor R15, with series diode D11 and current limiting resistor R16. The meter is fixed, as stated earlier, to the from small edge of the box, which also accommodates the LED and ozone output control potmeter. The LED is wired along with diode D12, re sistor R17, and capacitor C9 as shown in Fig. 6.

The lid, on the outside, may be pasted with the warnign label: "DANGER-DO NOT OPEN WHEN IN USE".

After the whole assembly is checked and mains supply is given, one can watch the meter reading and green LED on the panel. The glowing LED indicates that the circuit, along with LOT, is working and the meter shows that the there is a discharge. The sound of the air-pump wil be heard of course, but one can also hear the hissing corona sound distinctly. If lights are 'off', a blue glow may also be seen on watching from the end of the glass. A smell like that of rotten fish from the tube indicates presence of ozone. The meter reading needs calibration now.

Calibration

There are two ways ot do the calibration. One is by using an ozone gas analyser, which is an expensive instrument. So, the other method, which is economical, is described here.

Potassium iodide (KI) solution is converted to iodine gas by ozone. Taken a
known quantity of KI solution and bubble the ozonated air from ozone generator through it, for a definite time (one minute). The free liberated iodine can be estimated by titration experiment with thiosulphate. Thus, by knowing how much iodine has been liberated, one can find how much ozone has been absorbed in the solution by quantitative analysis. This gives the gas output form the tube in mg/litre. The gas output can be foud by finding the time taken to replace the 1 litre of water by the bubbling gas. After estimating the output of the unit, marks are made on the meter. This is a prototype marking which can be followed in other units of similar design.

Usage

The unit can be used where a 230 V AC mains supply outlet is available. Theozone generated can be let into air or bubbled through the solution or water being treated using ceramic diffusers (available from aquarium equipment shops). The time rating of this unit is very short. Sine there is no fan employed for cooling, both the discharge tube and circuit board transistor may quickly heat up The tested rating at ambient temperature of 250 Cis 5 minutes.. This tim is sufficient for all the applications described below.

Lab note: The circuit could be continuously kept 'on' with reduced AC in-

Fig. 8: Photograph of author's prototype
put of 120 V AC after changing some of the component values, including LOT, at EFY Lab. The changed components/ values have been incorporated into the final circuit shown in Fig. 2. Since higher AC voltage (greater than 20 kV) was available, we could increase the separation between the aluminium and glass tubes appreciably.

1. Water disinfection. The impure water can be disinfected by bubbling ozone through it for a time so that estimated $4 \mathrm{mg} / \mathrm{litre}$ is dissolved.
2. Air purification. You can purify the air of your room by letting out ozonated air upward into it for five minutes, with a fan running.
3. Mosquito repulsion. Same as above, but please shut the windows soon after switching 'off' the ozone generator. This operation is to be done in he morning to drive away the mosquitoes and in the early evening at around 5 pm to prevent them from coming in. The operation may be repeated at midnight when malaria mosquitoes normally attack.
4. Bleaching. The stains of ink on clothes can be bleached by applying ozone gas. On bubbling ozone into the diluted ink contained in a test tube, the water becomes clear within a short time.
5. Pollutant treatment. Ozone in large quantities can be used for treating polluted water in industry, along with bacterial treatment. The BOD (biological oxygen demand) can be brought down to 30 with ozone only.
6. Mouth washing. You may ozonate 200 cc of water and use it for gargling.
7. Vegetable clean. Only ozonated water should be used for cleaning vegetables like cabbage, tomatoes, and carrot. Chlorinated water is harmful.
8. Skin wound healing. An exposure to the ozone gas quickly heals skin wounds and rashes. You may apply ozonated olive oil to speed up healing.

There are may other uses of ozone which one can try. The gas should not, however, be inhaled directly, continuously.

CONFERENCE TIMER

K. UDHAYA KUMARAN VU3GTH

During a conference where speakers are allotted different time slots for completing their speech, it is essential to use a suitable conference timer which could be programmed for the given time slot. It should not only provide indication as to when the allotted time slot. It should not only provide indication as to when the allotted time is over, but also about the leftover time at any given instant. The conference timer presented here is designed to incorporate all such facilities and is expected to prove quite useful.

This conference timer is just a 2digit (minutes) countdown timer which can be preset from 01 minute to 99 minutes. The time duration is preset using

PARTS LIST	
Semiconductors:	
IC1, IC2	CD4511B, BCD-to-7segment latch/decoder/ driver
IC3, IC4	- CD4510 BCD up/down counter
IC5	- 4060B 14 -stage counter/ divider/oscillator
T1-T4	- BC547 npn transistor
T5	- SL100 npn transistor
D1-D8	- 1N4007 rectifier diode
D9	- 5.1V zener
LED1	ed LED
DIS1, DIS2	- LTS543 commoncathode display
Resistors (all 1/4-watt, $+5 \%$ carbon, unless stated otherwise):	
R1-R14	470-ohm
R16-R18	
R24, R28, R31	- 100-kilo-ohm
R19	- 100 ohm
R20, R27	- 33-kilo-ohm
R22, R23	- 10-kilo-ohm
R25, R30	- 22-kilo-ohm
R29	- 22-kilo-ohm
R26	- 470-ohm
VR1	- 50-kilo-ohm preset
VR2	- 1-mega-ohm preset
Capacitors:	
C1	- 180pF ceramic disk
C2	- 47pF, 25V electrolytic
C3	- 001uF ceramic disk
C4	- 0047uF ceramic disk
Miscel laneous:	
RL1	- Relay 6G, 100 -ohm
S1	- DPDT slide switch
S2, S3	- Tactile switch
S4	- SPDT slide switch
PB	- Piezo buzzer

tactile switches S2 and S3, with slide switch S1 in 'set' position. Once the time duration is preset, the same is displayed in 7-segment LED displays (DIS. 1 and DIS.2).

As soon as the designated speaker starts speaking, switch S1 is flipped from 'set' position to 'start' position. The displayed time will start decrementing once a minute until it becomes 00, i.e
the unit digit (DIS.1) and tens digit (DIS.2) both become zero. At this juncture, the timer stops decrementing further and an interrupted beep sound is heard from the buzzer, indicating that the time allotted to the particular speaker is over.

In this circuit, IC5 (CD4060B, a 14stage binary counter with internal oscillator) is used for generation of the basic timing pulses. Presets VR1 and VR2 are required to be adjusted for obtaining approximately $1 \mathrm{~Hz}(1.0666 \mathrm{~Hz}$, to be more precise) pulses from pin 7 (Q4) of IC5, while the pulses from pin 15 (Q10) are available at the rate of one pulse per minute. For countdown timer

Fig. 1: Circuit diagram of conference timer

Fig. 2: Appliance 'on/off' switching application for timer
(CD4510B). They convert the BCD code to 7-segment positive logic output code to display the equivalent decimal digits. While displaying decimal digits 9 and 6 , their tails are not displayed. The store function available in these ICs is not used in this circuit and hence the store pin 5 of IC1 and IC2 is made permanently low.
ference timer while its down counting mode is used for normal timer operation.

When presetting, the carry 'pout' pin 7 of IC3 and carry 'in' pin 5 of IC4 are not cascaded, to permit presetting of tens and units digits independently (using push-to-on tactile switches S2 and S3, respectively). In countdown mode carry 'out' pin 7 of IC3 and carry 'in' pin 5 of IC4 are cascaded for 2-digit countdown timer operation. For presetting function, 1 Hz (approx.) pulses are used, while for normal cascaded countdown operation of the timer, pulse rate of one-pulse-perminute is used. As stated earlier, these two types of pulses are available from pins 7 and 15, respectively, of IC5.

Transistor T2 is used to stop or activate the IC5 binary counter. When transistor T2 is in 'cut-off" state, its collector voltage goes 'high'. As a result, the positive supply rail is extended to pin 11 of IC5 via resistor R23 and diode D6 to stop IC5 from counting further. When transistor T2 conducts, its collector voltage goes low and counter IC5 becomes active. The stop and run functions of IC5 binary counter are used during countdown operation only. While presetting, the IC4 binary counter will be in running condition.

When slide switch S1 is slided to 'set' position, pin 10 of both IC3 and IC4 is taken 'high' to select the countup mode for presetting th timer. As the same time, transistor T12 gets forward biased and conducts. As a result, its collector as well as pin 5 of IC4 go 'low'. Pin 5 of IC3 is permanently low and both these ICs are not cascaded. The one-pulse-per-minute (from pin 15 of IC5) is no longer available to diode D3-D4 junction, while 1Hz pulse (available from pin 7 of IC5) may be applied to hte clock input in 15 of IC3 or IC4 by pressing the respective tactile switches S2 and S3. For presetting the timer, depress tactile switch S2 and S3 until desired count is displayed in unt and tens digit (DIS. 1 and DIS.2). When desired digit has been displayed in DIS. 1 or DIS.2, immediately release switch S2 and S3, as the case
may be. Due to conduction of diode D7, transistor T2 will be 'on' state and thus binary counter (IC5) is in runing condingion. At the same time, 'auto re set' transistor T4 will also be in 'on' state, with its collector pulled low. Thus, IC5 will continue to operate normally.

When slide switch S1 is slided from 'set' position to 'start' position, the red LED1 immediately glows. Transistor T4 goes to 'cut-off' and its collector transits from 'low' to 'high' state. The highgoing spike is coupled through capacitor C3 to reset pin 12 of IC5. Thus, IC5 is reset and starts counting from beginning. During this operation, pin 10 of both IC3 ad IC4 are held Iow to select countdown mode of operation. Transistor T1 goes to 'cut-off' state. Thus carry 'out' pin 7 of IC3 and carry 'in' pin 5 of IC4 are cascaded through resistor R16. The one-pulse-per-minute is applied to
pin 15 of both ICs (IC3 and IC4) through diodes D3 and D4. Now the digits displayed in DIS.1-DIS. 2 combination start decrementing once every minute. When digits displayed in DIS.1-DIS. 2 become '00', carry 'out' pin 7 of both IC3 and IC4goes 'low' and transistor T2 does not conduct. As a result, collector of transistor T2 goes 'high' and the binary counter stops counting. Simultaneously, transistor T3 conducts and activates the buzzer (functioning in interrupted mode). Thus, interrupted beep sound is heard from the buzzer, indicating that preset time duration has ended. Pin 7 of both IC3 and IC4 goes 'low' during display of digits '00' in DIS. 1 and DIS. 2 During display of any digits other than '00', the carry 'out' pin 7 of either IC3 or IC4 will be high or both may be 'high'. When the timer is in countdown mode, do not press switch S2 or S3 to avoid
disturbance in timer setting.
This circuit, apart from using as a conference timer, may be converted into programmable 2-digit 'on' or 'off' timer to switch 'on'/'off' any electrical or electronic appliance after 1 minute to 99 minutes duration by incorporating additional add-on circuit shown in Fig.2. During 'on'/off timer operation, the digits displayed in DIS.1-DIS. 2 help one to know the exact leftover time to switch 'on' 'off' the appliance. When using this circuit as 'off' timer, slide switch S4 to 'off' position and, for 'on' timer operation, slide switch S4 to 'on' position. When displayed digits become ' 00 ', the relay will be energised to turn 'on'/'off' the load.

The actual-size, single-sided PCB for the circuit in Fig. 1 is shown in Fig. 3, while its component layout is given in Fig. 4.

CIRCUIT IDEAS

ADD-ON STEREO CHANNEL SELECTOR

PRABHASH K.P.

The add-on circuit presented here is useful for stereo systems. This circuit has provision for connecting stereo outputs from four different sources/channels as inputs and only one of them is selected/ connected to the output at any one time.

When power supply is turned 'on', channel $A(A 2$ and $A 1)$ is selected. If no audio is present in channel A, the circuit waits for some time and then selects the next channel (channel B), This search operation continues until it detects audio signal in one of the channels. The inter-channel wait or delay time can be adjusted with the help of preset VR1. If still longer time is needed, one may replace capacitor C1 with a capacitor of higher value.

Suppose channel A is connected to a tape recorder and channel B is connected to a radio receiver. If initially
channel A is selected, the audio from the tape recorder will be present at the output. After the tape is played completely, or if there is sufficient pause between consecutive recordings, the circuit automatically switches over to the output from the radio receiver. To manually skip over from one (selected) active channel, simply push the skip switch (S1) momentarily once or more, until the desired channel inputs gets selected. The selected channel (A, B, C, or D) is indicated by the glowing of corresponding LED (LED11, LED12, LED13, or LED14 respectively).

IC CD4066 contains four analogue switches. These switches are connected to four separate channels. For stereo operation, two similar CD4066 ICs are used as shown in the circuit. These analogue switches are controlled by IC CD4017 outputs. CD4017 is a 10-bit ring
counter IC. Since only one of its outputs is high at any instant, only one switch will be closed at a time. IC CD4017 is configured as a 4-bit ring counter by connecting the fifth output Q4 (pin 10) to the reset pin. Capacitor C5 in conjunction with resistor R6 forms a power-on-reset circuit for IC2, so that on initial switching 'on' of the power supply, output Q0 (pin 3) is always 'high'. The clock signal to CD4017 is provided by IC1 (NE555) which acts as an astable multivibrator when transistor T1 is in cut-off state.

IC5 (KA2281) is used here for not only indicating the audio levels of the selected stereo channel, but also for forward biasing transistor T1. As soon as a specific threshold audio level is detected in a selected channel, pin 7 and/ or pin 10 of IC5 goes 'low'. This low level is coupled to the base of transistor T1, through diode-resistor combination of D2-R1/D3-R22. As a result, transistor T1 conducts and causes output of IC1 to remain 'low' (disabled) as long as the selected channel output exceeds the preset audio threshold level.

Presets VR2 and VR3 have been included for adjustment of individual audio threshold levels of left stereo channels, as desired. Once the multivibrator action of IC1 is disabled, output of IC2 does not change further. Hence, search-

ing through the channels continues until it receives an audio signal exceeding the preset threshold value. The skip
switch S 1 is used to skip a channel even if audio is present in the selected channel. The number of channels can be eas-
ily extended up to ten, by using additional 4066 ICs.

WATER TEMPERATURE CONTROLLER

VIJ AY D. SATHE

The circuit presented here controls the temperature of water as well as indicates it on an LED
bargraph. When the temperature of water is 00 C , none of the bargraph display LEDs glows. But as the tempera-
ture starts increasing above approximately 300 C , LEDs from LED1 through LED8 of the bargraph start glowing one after the other. When temperature is around 300 C , only LED1 would be 'on'. For temperature greater than 97dig C, all display LEDs will be 'on'.

To detect the temperature of water, commonly used resistance-temperature detector (RTD) PT100 is used. It is connected to one of the arms of a Wheatstone bridge as shown in the figure RTD PT100 has a resistance of 100 ohms

when surrounding temperature is 0dig C. (To cater to resistance tolerances and calibration, resistor R6 (22-ohm) and 1-kilo-ohm preset VR1 were added at EFY lab. During testing.) Ideally, at 00C, the bridge has to be in balanced condition and, for other temperatures, the bridge will be unbalanced. The unbalanced voltage of the bridge is converted into suitable value in the range 0 V to 5 V (corresponding to temperatures 00 C to 1000 C , respectively) by the instrumentation amplifier formed by op-amps IC1 through IC3 (uA741). Output of instrumentation amplifier is given to voltage compactors for driving the display LEDs.

Before using this circuit, the following adjustments have to be made. First, immerse the RTD in ice water $(00 C)$ and adjust preset VR1 such that the bridge becomes balanced and the output of IC3 becomes)V. Next, immerse
the RTD in boiling water and slightly adjust preset VR2 such that the output of IC3 becomes 6V. Respeat the above two steps four to five times.

To control the temperature of water, 'on'/'off' type controller is used. Lower threshold point is set at 97oC. An electric heater coil is used for heating the water. When power supply is switched 'on', the heater starts heating the water. When temperature reaches 800C, output of IC5(b) goes 'high'. This turns 'on' relay driver transistor T1 to energise relay RL1. In this state, relay RL2. Relay RL2 in energised state cuts off power supply to the heater coil. Relay RL2, once energised, remains so due to the latching arrangement provided by its second pair of contacts. Simultaneously, the buzzer also sounds, due to forward biasing of transistor T3.

Since the supply to the heater is cutoff, the temperature of water starts de-
creasing. Gradually, the buzzer goes 'off', as output of IC5(d) goes 'low'. When temperature goes below 800C, output of IC5(b) goes 'low' to turn 'off' transistor T1 and relay RL1. As a result, the power supply provided to relay RL2 (via RL1 N/O contacts) is cut off and relay RL2 de-energises. This will again turn 'on' the mains electric power supply to the heater coil. Once again, the temperature of water starts increasing and the cydle repeats to maintain water temperature within the limits 800C to 97oC.

This controller can be used to control the temperature of water in water heaters, boilers, etc. The lower and upper threshold points can be changed by connecting the base terminals of transistors T1 and T2 to different output terminals of voltage comparators (IC4 and IC5). Base terminals of transistors T1 and t2 are meant for lower and upper threshold points, respectively.

EMERCENCY LIGHT

RAJ ESH KAMBOJ

The circuit of emergency light presented here is unique in the sense that it is automatic, compact, reliable, low-cost, and easy to assemble for anyone. The circuit consists of four sections, namely, battery charging section, inverter section, changeover section, and low battery voltage indication section.

In the battery charging section, 230 V AC mains is converted to 9 V AC using step-down transformer X1. The diodes

D1 and D2 from a full-wave rectifier, and capacitor C1 filters the rectified voltage. The output of filter is about 12 V DC, which is connected to the collector of transistor T1 provides a fixed bias of 8.2 V . Thus, transistor T1 works as a regulator and provides a constant voltage for charging the lead-acid battery. LED1 indicates the charging of battery.

The inverter section comprises transformer X2, transistor T2, capaci-
tor C2 and resistor R3. Transformer X2 is ferrite core type. Its winding details are shown in Fig. 2. While core details are shown in Fig. 3. Resistor R3 provides DC bias to the base of transistor T2, while capacitor C2 couples the positive AC feed-back from winding L1 to the base of transistor T2 to sustain the oscillations. The AC power developed across primary winding L2 is transferred to secondary winding L3, which ultimately lights up the fluorescent
 tubes.

The changeover section uses diodes D3 and D4 as an automatic switch. In the presence of AC mains supply, diode D3 keeps transistor T2 in its cut-off state, while diode D4 pro-

vides $D C$ path for charging of the battery. But, in the absence of AC mains

NOTE:ALL DIMENSIONS IN mm
Fig. 3: Details of EE $25 \times 13 \times 7$ ferrite core
supply, diode D4 is reverse biased and acts as an 'off' switch, inhibiting the conduction of diode D3, which allows normal functioning of transistor

T2. The inverter can be switched 'off', when not required, by using 'on/off' switch S1.

Low battery voltage indicator circuit comprises transistor T3, senser diode D6, LED 2, variable resistor VR1, and resistors R4 through R6. The low battery indication can be adjusted from 4.7 V to 5 V by using variable resistor VR1. When the battery voltage is above 4.7V, zener diode D6 comes out of conduction, keeping transistor T3 at cut-off level. At the same time, LED2 gives the indication of low battery volt-age.

The whole circuit can be assembled in a cabinet of emergency light suitably.

PARALLEL TELEPHONES WITH SECRECY

MANUJ PAUL

0ften a need arises for connection of two telephone instruments in parallel to one line. But it creates quite a few problems in their proper performance, such as over loading and overhearing of the conversation by an undesired person. In order to eliminate all such problems and get a clear reception, a simple scheme is presented here (Fig. 1).

This system will enable the incoming ring to be heard at both the ends. The DPDT switch, installed with each

Fig. 2: Circuit diagram of external ringer
to the line.
To receive a call at an end where the instrument is not connected to the line, you just have to flip the toggle switch at your end to receive the call, and act as usual to have a conversation. As soon as the position of the toggle switch is changed, the line gets transferred to the other telephone instrument.

Mount one DPDT toggle switch, one telephone ringer, and one telephone terminal box on two wooden electrical switchboards, as shown in Fig. 3. Interconnect the boards using a 4-pair telephone cable as per Fig. 1. The

Fig. 3: Mounting details of DPDT switch, RINGER and and telephone terminal box Fig. 1. The
system is ready to use. Ensure that the two lower leads of switch S2 are connected to switch S1 after reversal, as shown in the figure.

Lab.

Note: The external ringer for the project as shown in Fig. 2., was designed/ fabricated at EFY Lab.

C.K. SUNITH

The circuit described her is different form conventional door bell circuits in the sense that it can produce two different tones-one of a lower frequency and the other of a much higher frequency.

The circuit uses a timer IC 555, which has been wired in free-running mode. When switch S1 is depressed, the circuit oscillates at around 1.5 kHz , resulting in a higher frequency note. When switch S2 is depressed, transistor T1 is turned 'on' and thus it shunts resistor R2 across capacitor C2. As a result, the circuit now oscillates at approximately 150 Hz and a tone of much lower frequency is generated.

The circuit can be conveniently employed as a doorbell for two separate doors at the same floor level. Doorbell switches S1 and S2 can be mounted

a small cabinet. Tone can be adjusted with the help of preset VR1. Before power is switched 'on', it is advisable to adjust VR1 to approximately 5 kiloohm, that is, at the centre of the full

near the re-spective doors.
The circuit can be assembled on a general-purpose PCB and housed inside
range of potentiometer VR1. A trimpot can be used as VR1 for convenience of assembly.

PRADEEP G.

Amajor drawback of some pest repellers is that their power output is low and hence their effectiveness suffers. The pest repeller circuit described here generates powerful ultrasonic signals to repel pests. In addition to the ultrasonic frequency oscillator, separate push-pull power amplifier and transformer are used to boost ultrasonic signals.

Ultrasonic frequency oscillator is built around IC CD4047, which provides complementary outputs. These complementary outputs are amplified by transistors T1 and T2 (BD139) to drive transistorised push-pull power amplifier stage comprising power transistors T3 and T4 (2N 3055).

The output of the power amplifier is coupled to a tweeter, through output

transformer X1. Transformer X1 is wound over ferrite core (UU or CC core). Primary winding consists of 150 turns of 28

SWG while secondary winding comprises 40 turns of 24 SWG wire. Adjust potentiometer VR1 for maximum effectiveness.

BUILD YOUR OWN C-BAND SATELITE TV RECEIVER
 S. DAS GUPTA

Satellite TV reception has gained much popularity in India over the last three decades, specially after the live telecasting of the Gulf war by CNN. Both the S-band and C-band satellite signals are available to India. C-band signals are beamed from various satellites like Asiasat, Aralisat, and Insat 2B.

In India, the C-band reception is much more popular compared to the S-band. The popular satellite programmes which can be received on C-band include Star TV, Zee TV, PTV2, CNN, ATN, Sun TV, and Doordarshan. Besides, programmes from Russia, China, France, and Saudi Arabia are also available on C-band channels, although their language is a barrier.

Fundamentals of C-band reception

You are aware that to receive any satellite signals, a dish antenna is required. The mechanical aspects and the dish-orientation principles to receive satellite signals in S-band and C-band remain basically the same. The C-band downlink frequencies range from 3.7 GHz to 4.2 GHz The direct reception system comprises:
(i) Dish antenna
(ii) LNB (low-noise block converter) and feed horn assembly.
(iii) Satellite receiver.

Dish antenna: There are different types of dish antennae (e.g. fibre and mesh) available in various sizes ranging from 1.8 metres to 4.8 metres. The size of the dish is dependent on the size of the distribution network and the strength of the signal.

The area where the signal is weak requires a large dish, and vice-versa. The strength of the signal can also be recognised from the footprints of different satellites. As an example, the footprint (i.e the geographic area on ground
covered by a satellite downlink antenna) measured in terms of effective isotropic
which supports the entire dish.
(b) The parabolic reflector.
(c) The electromechanical arrangement to move the dish in the horizontal and vertical planes to track the satellite. (This arrangement is generally used in a dish of 3.7 metre and above sizes.)
(d) LNB mounting arrangement.

Base structure should be strong enough to withstand the entire load of the dish. To withstand the wind load dur-

Fig. 1: Footprint of Star TV (Southern)

Fig. 2: Feed horn
radiated power (EIRP) in dBW (decibels w.r.t. one watt) of Asiasat satellite (transmitting Star TV programmes) over India is given in Fig.1. Star TV recommends the following sizes of dish antennae for various regions:

	Personal receiving system	Cable distribution system
Delhi	1.8 mtr	3.0 mtr
Mumbai	2.0 mtr	3.0 mtr
Cal cutta	3.0 mtr	4.8 mtr
Chennai	3.7 mtr	6.0 mtr

In order to maintain optimum carrier-to-noise ratio (C / N ratio), a larger size of dish is required for the larger cable distribution network. A dish consists of the following parts:
(a) The stand or the base structure
ing heavy wind or storms, the base structure should be firmly grounded in concrete.

The parabolic reflector. It is the most important part of the dish. The reflector

TABLE I	
Relationship between \mathbf{F} / \mathbf{d} and \mathbf{X}	
\mathbf{F} / \mathbf{d}	$\mathbf{X}(\mathbf{m m})$
0.42	0
0.40	5
0.38	10
0.36	15
0.34	20

TABLE II	
Specification of the DBS tuner	
with FM demodulator	
Receiving frequency	950 MHz to 1750 MHz
Input impedance	$75-\mathrm{ohm}$
IF	$49-5 \mathrm{MHz}$
Channel select (SY)	By electronic tuning
ODU supply in-and-out	$18-25 \mathrm{~V}$ DC
Tuning voltage	0.6 V to 20 V DC
IF bandwidth	27 MHz (3 dB down)
Output impedance	$75-\mathrm{ohm}$
Demodulation (SY)	PLL

Fig. 3(a): Block diagram of C-band satellite receiver

Fig. 3(b): Pin out of DBS timer with FM demodulator
(b) Polarator: Inside the feed horn, there is a probe, which is required to move according to the polarisation of the satellite signals.

F or receives the signals from the satellite and focuses them to the focal point where the feed horn is positioned. The focused signal picked up by the feed horn is fed into the LNB, which is mounted on feed horn itself. The dish antenna kits are now-adays readily available and can be easily assembled.

LNB assembly. The LNB assembly consists of the following three parts: the scalar ring, polarator, and LNB.
(a) The scaler ring: There are two types of scalar rings, namely, adjustable and fi
(i) Adjustale scalar ring: In this, the scalar ring slides on the feed horn and can be positioned to suit the focal distance to diameter ratio (F / d) of the dish (refer Fig. 2). The focal distance ' X ' is related to the F/d ratio, as shown in Tablel.
ii) Fixed scalar ring: Here, the scalar ring is an integral part of the feed horn and the distance ' X ' is fixed. It may not always suit the F/d ratio of the dish being used. Hence it is not preferred.
large dish assemblies, a motorised polarator is prefered. The motor used in a polarator has three terminals: +5 V , ground, and pulse.

The motor responds to the width of the pulse supplied by the receiver. The pulsewidth can be varied from 0.8 to 2.8 ms with the help of the 'trim' controls in the receiver and the position of the V/H (vertical/horizontal polarisation) switch. In 'H' position, the probe can rotate by almost 140°. For a stream of pulses with fixed width, the probe position will be fixed. The probe will move only when the pulsewidth is changed. Keeping the 'trim' control in mean position and changing the V / H switch from V to H or H to V results in pulsewidth changes in one step, enabling the probe to rotate through 90°. To know as to why the probe movement is required, we have to know about the 'polarisation'.

There are three types of polarisations: (a) vertical, (b) horizontal, and (c) circular. Electromagnetic waves have two
fields-electric field and magnetic fieldwhich are mutually at right angle to each other and also at right angle to the direction of motion.

In vertical polarisation, the electric field is along the North-South axis of the satellite.

In horizontal polarisation, the electric field is at 90° to the North-South axis of the satellite.

In circular polarisation the electric field advances like a cork screw. It can be either left-hand circular (LHC) or righthand circular (RHC).

To convert this circularly polarised waves into linearly polarised waves (vertical or horizontal), a 6.4 mm thick fibre glass piece is fixed in the feed horn along its diameter. For example, CNN transmission has circular polarisation, and therefore the fibre glass piece is essential to get maximum signal pick-up. On the other hand, Star TV signal is vertically polarised, and hence the fibre glass piece is not required. It should in fact be removed to avoid 3dB loss.

For maximum signal pick-up, the probe should be in line with the polarisation of the signal it is receiving. Probe movement is therefore required for alignment purpose. If the probe is aligned to receive a horizontally polarised signal and the signal being received is vertically polarised, the probe has to be moved through 90° for maximum signal pick-up. This will give a crystal-clear picture. This can be done either by trim control or with the help of V/H switch, with the trim control in its centre position.
(c) LNB. The LNB stands for low-noise block converter. LNB comprises an amplifier and a frequency converter. The signals in C-band (3.7 GHz to 4.7 GHz), which are received and reflected by the dish, are fed to the amplifier inside LNB via the feed horn probe, as mentioned earlier. The signal-to-noise ratio of the amplifier has to be rather good because the received signals are very weak. The lower the noise, the better will be picture quality.

The converter inside the LNB comprises a fixed frequency oscillator running at 5150 MHz , which beats with the incoming signal frequency. The difference frequencies obtained range from 5150 $4200=950 \mathrm{MHz}$, to $5150-3700=1450$ MHz , i.e. the input frequency range of 4.2 GHz to 3.7 GHz is converted to 950 to 1450 MHz range. The gain of LNB is typically around 50 dB .

Another important parameter of the LNB is its noise temperature. The noise equival ent temperature of most of the good-qual ity LNBs ranges from $26^{\circ} \mathrm{K}$ to $40^{\circ} \mathrm{K}$ (K stands for kelvin). The picture on a $26^{\circ} \mathrm{K}$ LNB will show less noise compared to that of a $40 \% \mathrm{~K}$ LNB, especially when the received signal is weak. Theoretically, the noise power is related to the temperature as follows:

Noise power $=$ KTB watts
where K is the Boltsman's constant $=$ $1.381 \times 10^{-23} \mathrm{~T}$ is temperature in ${ }^{\circ} \mathrm{K}$; and B is the system bandwidth in Hz .

A coaxial cable connected between the LNB and receiver serves two purposes: (i) it feeds +18 V DC to the LNB, to power the amplifier and converter circuits inside LNB, and (ii) the converted frequency (950 MHz to $1,450 \mathrm{MHz}$) is fed from LNB to 'C-band' receiver.

C-band receiver. The main function of the receiver is to select a particular channel from the converted block of frequencies (between 950 and 1450 MHz) and retrieve the audio and video signal information. The audio and video output signals are finally fed to the TV monitor's audioand video-input terminals, respectively. If the TV does not have separate audio and video input points, then feed the audio and video output signals from receiver to an RF modulator which modulates the RF and provides a modulated VHF RF output (corresponding to anyone of the channels in the VHF

10 of IC1.
Audio IF frequency can be varied by varying the voltage of VCO (voltagecontrolled oscillator) of the IC. The VCO voltage is controlled with the help of potmeter VR2, which is connected to pin 13 of IC1 and acts as an audio IF fre-quency-controller. Varactor diode D1 (MV2109) is con-
band from channel 2 to channel 12) to operate the domestic receiver directly.

The block diagram of a satellite re ceiver is shown in Fig. 3(a).

The coaxial cable from LNB is connected to the tuner (which contains RF and IF modules) through ' F ' socket. To simplify the design for an average constructor, the Mitsumi TSU2-EOIP tuner is used in the circuit. Pinout of the tuner are shown in Fig. 3(b) while its specifications are given in Table II. It is a readymade tuner with tunable range from 950 MHz to 1450 MHz , giving baseband output directly with audio sub-carrier.

The tuner module is tuned with a voltage $\left(\mathrm{V}_{\mathrm{T}}\right)$ between 0 and 20 V and requires no high/low band switch. It has a terminal for applying the supply voltage for LNB, which is carried to the LNB via the down lead, coaxial cable type RG-8 or RG-11. The module itself is fed +12 V and +5 V DC for its operation. The complete circuit diagram of the receiver is shown in Fig. 4.

The baseband output from the tuner module is fed to the audio stage, video stage, and signal-strength indication circuit.

Audio section. It consists of three stages: sound intermediate frequency (SIF) stage, sound driver stage, and sound output stage.

The audio signal from the baseband output of tuner module is separated with the help of an LC (inductance-capacitance) tuned wave-trap circuit comprising capacitors C1 through C4 and inductors L1 through L3. SIF signal is fed to pin 6 (limiter section) of IC1 (NE564). The positive DC voltage is fed to pins $1,3,9$, and

	PARTS LIST
Semi conductors:	
IC1	- NE564 phase locked loop
IC2	- NE592 video amplifier
IC3	- NE555 timer
IC4, IC7	- 7805,5V regulator
IC5	- 7818, 18V regulator
IC6	- 7812, 12V regulator
T1-T6	- 2SC2458 npn transistor
	- MV2109 varicap diode
D2, D5, D6	- 1N4148 switching diode
D3, D4	- OA79 detector diode
D7-D14	- 1N4007, 1-amp silicon diode
LED	- Red LED
Resistors (all $1 / 4 \mathrm{~W}, \pm 5 \%$ car stated otherwise)	
R2, R16, R20	
R27	- 1 kilo-ohm
R4, R19	- 1.8 kilo-ohm
R5	- 390 ohm
R6	- 1.2 kilo-ohm
R7, R8, R12	
R17, R35	- 2.2 kilo-ohm
R9	- 120 ohm
R10	- 5.6 kilo-ohm
R13, R14, R15	
R25,R26, R39-10 kilo-ohm	
R18	- 180 ohm
R21, R33	- 100 ohm
R22, R24	- 150 ohm
R23	- 330 ohm
R28	- 470 ohm
R29	- 82 ohm
R30	- 47 kilo-ohm
R31	- 270 ohm
R32	- 1.5 kilo-ohm
R34	- 8.2 kilo-ohm
R36	- 120 kilo-ohm
R37, R44	- 82 ohm
R38	- 100 kilo-ohm
R40, R41	- 560 ohm
R42	- 15 ohm
R43	- 68 ohm
VR1, VR2,	
VR7, VR8	- 4.7 kilo-ohm linear potentiometer
VR3, VR4, VR5, VR6	- 4.7 kilo-ohm presets

nected across pins 12 and 13 through capacitors C9 and C11.

Audio bandwidth can also be adjusted

Capacitors:	
C1, C7, C11, C18	
C21, C27	- 1 kpF ceramic disc
C28, C29, C44	
C2, C3, C4,26-56pF ceramic disc	
C5, C6, C9, C13	
C15, C31	- $0.01 \mu \mathrm{~F}$ ceramic
C8	- $1 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic
C10	- 27pF ceramic disk
C12	- 18pF ceramic disk
C14, C16,C24-22uF, 25V electrolytic	
C17 - 68pF ceramic disk	
C19, C20 - 150pF ceramic disk	
C22 - 10pF ceramic disk	
C25 - $220 \mu / 25 \mathrm{~V}$ electrolytic	
C30 - $0.22 \mu \mathrm{~F}$ ceramic disk	
C32 - 100 ${ }^{\text {F }, 25 \mathrm{~V} \text { electrolytic }}$	
C33 - 68 F , 25V electrolytic	
C34 - 2200 F , 50 V electrolytic	
C35 - 3300 HF , 50 V electrolytic	
C43 - 10 kpF ceramic disk	
C37-C40, C45	
C46, C36 - $0.1 \mu \mathrm{~F}, 400 \mathrm{~V}$, ceramic dis	
C41 - $33 \mu \mathrm{~F}, 40 \mathrm{~V}$ ele	
C42 - $100 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic	
Miscel laneous:	
	- VU meter ($250 \mu \mathrm{~A}$)
	- Mitsumi tuner (TSU2EOIP)
	PCB
	- Chassis, knobs, on/off
	witch
	- Heat-sink for regulators
L1, L2, L3	- $4.7 \mu \mathrm{H}$ inductor (fixed)
	- $2.2 \mu \mathrm{H}$ inductor (fixed)
	- 3-pin screw type connector for motorised feed horn pulse
X1	- 230V AC primary to
	17 V AC, 1-amp and
	24 V AC, 1-amp secondar
	transformer
S1	- DPDT rocker switch
S2	- On/off switch

Fig. 6: PCB layout for the circuits in Figs 4 and 5 (track-side)
with the help of potmeter VR1 (audio B/N control) by changing the voltage at pin 2 (phase comparator section) of IC. Potmeter VR1 generally changes the phase of the audio signal.

After processing of the audio IF signal, including its amplification and rectification, an AF output is available at pin 14. The audio output is further amplified by transistor amplifiers built around tran-
sistors T1 and T2 (2SC2458), which develop 1-volt peak-to-peak audio output across resistor R16.

Potmeter VR3 acts as an audio gain control.

Video section: This is divided into four stages, namely, video amplifier, video detector, video driver, and video-output stage.

Signal from baseband output of tuner
module is fed via resistor R17 (2.2 kilo-ohm) to the base of video amplifier comprising transistor T3 (2SC2458). Capacitor C17 and resistor R19 are used to suppress the interference. R20 (1 k) is used for emitter bias.

Video signal is taken from the emitter of transistor T3 and fed to video detector IC2 (NE592) through an LC network comprising capacitors C18 through C20 and inductor L4 (a video take-off coil). Pin 1 of IC is taken as reference input and pin 14 is taken as signal input. A suitable positive bias is given to pin 1 and pin 14 through resistors R22 to R24.

The output is taken from pin 8 of IC (positive video) and fed to the video driver as well as the output stage comprising transistors T4 and T5. After amplification of video signal, IV peak-topeak video output is taken from the emitter of transistor T5 through capacitor C25 and resistor R29. Potmeter VR4 (4.7k) is a video gain control, which is used to adjust the contrast of picture.

Signal-strength indicator. To indicate the signal strength of the incoming signal, a $250 \mu \mathrm{~A}$ ammeter (or VU meter used in stereo decks) is employed. To drive the meter, an amplifier comprising transistor T6 (2SC2458) is used. The signal from baseband output of tuner module is fed to the base of transistor T6 through resistor R18 and capacitor C26. Positive bias is given to the base of transistor through resistor R30 (47k). The high-frequency AC output is taken from the collector of transistor T6 through capacitor C28 and fed to the voltage doubler circuit comprising diodes D3 and D4 and capacitors C28 and C29. The output is fed to microammeter via potmeter VR5, which can be adjusted for convenient deflection.

A doublesided PCB has been used,

CONSTRUCTION

TABLE III										
IC1 (NE 564)										
Pin no: Voltage (V):	$\begin{aligned} & 1 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.5 \end{aligned}$	3	$\begin{aligned} & 4 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 6.5 \end{aligned}$	63	71	8		
Pin no:	9	10	11	12	13	14	15	16		
Voltage (V):	1	4.5	1	2	2	4	1.5	0.5		
IC2 (NE592)										
Pin	1	2	3	4	5	6	7	8	8	10
Volt	9 V	OV	9 V	8.5V	OV	OV	9 V	9 V	OV	12 V
Pin	11	12	13	14						
Volt	8.5 V	8.5V	OV	9 V						
Transistors										
	Base	Emitter	Coll							
T1	3.2 V	3.2 V	7 V							
T2	7 V	7 V	12 V							
T3	8.2 V	8.2 V	12 V							
T4	7 V	7 V	12 V							
T5	7 V	7 V	12 V							
T6	2 V	OV	2 V							

with component side serving as a ground plane. From component side, copper foil has been etched from around all holes except those connected to ground. Ac-tual-size solder-side track layout is shown in Fig. 6. Component layout for the PCB is shown in Fig. 7. The author's prototype is shown in Fig. 8.

Testing

After completion of assembly and construction, check the +12 V and +18 V DC from power-supply regulator, before connecting it to the PCB. Now connect both the supplies to PCB and check that +18 V is available at the input ' F ' socket of tuner module. Then connect the dish/LNB lead to the tuner and connect the audio and video output from receiver either to the modulator or to the audio- and video-input terminals of the TV set.

Switch 'on' the receiver and adjust channel-selection potentiometer VR1 to select the desired channel. Audio can be fine tuned using potmeters VR1 and VR2. Audio amplitude can be adjusted with the help of potmeter VR3. Picture contrast is to be adjusted using potmeter VR4.

In case the receiver does not work properly, refer to the circuit diagram and check its connections. Check thoroughly all the connections and resolder if you find any dry joints. Finally, check the voltages at the pins of IC5 and transistors, as given in Table III, for any major discrepencies.

EPROM-BASED PROGRAMMABIE NUMBER LOCK
 JUNOMON ABRAHAM

Most of the code lock/number lock circuits presented in EFY so far have been based on discrete

Please note that its reset pin 4 is connected to output $A=B\left(O_{A=B}\right)$ pin 3 of comparator IC4 (CD4585). Thus, as long
pin 3 is at logic 1 and thus monostable IC1 is enabled. When magnitude of input A is not equal to B, the output pin 3 of IC4 is at logic 0 and as a result IC1 is disabled.

In enabled state, the monostable IC1 generates an output pulse when switch S1 (marked zero) is momentarily pressed. This output pulse from IC1 is used as a dock pulse for counter IC2 and shift register IC5. While IC2 counts on high-toIow transition of the clock, IC5 shifts on low-to-high going transition of the clock.

TTL and/or CMOS ICs. This circuit is based on a familiar EPROM 27C32, wherein the required code is stored. It is a number lock, which can be programmed to any coded number. The length of the number can also vary.

To make a codelock for a particular number (octal, decimal, or hexadecimal), that number is first converted to its binary equivalent. It is then entered bit-by-bit into consecutive memory locations of EPROM 2732 (IC3), starting with the MSB and ending with the LSB (D0). Assume that the required number is 12 (hex). Its equivalent binary number is 00010010. This binary number is entered into the EPROM at memory locations

Fig. 1: Complete circuit diagram of number lock starting with 001(hex),
as shown in Table I. The first memory location is always loaded with binary byte XXXXXXX0 (here, X means "do not care"). The data is stored in consecutive locations, starting with location 001 H , as stated earlier.

Description

The circuit comprises six ICs, including the EPROM and the voltage regulator. IC1 is a timer NE555, which is configured as a monostable flip-flop.

as 4-bit magnitude of input A to IC4 is equal to 4-bit magnitude of the other input B (to IC4), its output

Hence, to synchronise the operation of IC2 and IC5, the clock pulse to IC2 is inverted by the transistorised inverter stage around transistor T1.

At power on, IC2 is reset due to power-on-reset circuit built using capacitor C3 and resistor R5. Hence, all its outputs (including OO through O 5 connected to addresses A0 through A5 of EPROM IC3) are initially at logic 0 . In other words, initial address selection for EPROM is 000 H , since address lines A6 through A11 of EPROM 27C32 are permanently

Fig. 2: Acutal-size, single-sided PCB layout

Fig. 3: Component layout for the PCB
power-on reset circuit comprising capacitor C5 and resistor R6, connected to its master reset pin 5. Thus, initially its output 00 at pin 1 is at logic 0 . On receipt of first clock pulse from IC1, the data pin states of J and \bar{K} pins (4 and 3) get shifted to output pin 1. The logic level at these two pins (3 and 4) is normally zero as they are pulled to ground via resistor R3, when push to 'on' switch is in its normal (off) position. However, if switch S2 is kept pressed when clock pulse is generated by IC1 (by pressing switch S1 momentarily), logic 1 is output to pin 1 of shift register IC5.

In this circuit, the final opening or closing of lock is achieved through energisation of re-
grounded in this circuit. With each dock pulse from IC1, the counter IC2 output increments by one and so also the address of EPROM. Since the clock pulses from IC1 are also being applied to clock pin 6 of 4-bit shift register IC5 (CD4035), let us examine how the data at its input pins 3, $4(\overline{\mathrm{~K}}, \mathrm{~J})$ and output pin $1(00)$ changes. Please note that 01 through 03 (at pins 15,14 and 13 respectively) of the shift register are not used in this circuit.

On initial switching 'on' of power supply to the circuit, IC5 is reset due to the
lay RL1 via relay-driver transistor T1, whose base is connected to either 02,03 , O4, or 05 outputs of IC2 via resistor R7. The selection of the position where point A is to be connected would depend on the binary digits in the code. If binary code is of 4-bit length (equivalent to one hex digit), then four clock pulses are needed for advancing the EPROM address by four locations. On fourth pulse, O 2 will be at logic 1 (unless IC1 gets disabled due to non-matching of the code in comparator CD4585, earlier) to energise relay RL1. For 8-bit long code (equivalent to two hex

	PARTS LIST
Semiconductors:	
IC1	- NE 555 timer
IC2	- CD 4040 12-bit binary counter
IC3	- 27C32 EPROM
	CD 4585 4-bit magnitude comparator
IC5	- CD 4035 4-bit shift register
IC6	- 7805 regulator
T1, T2	- BC 547 npn transistor
Resistors (all $1 / 4$-watt, $\pm 5 \%$ carbon, unless stated otherwise):	
R1, R5	- 10-kilo-ohm
R2	- 220-kilo-ohm
R3	- 2.2-kilo-ohm
R4	- 3.3-kilo-ohm
R6	- 15-kilo-ohm
R7, R8	- 1-kilo-ohm
Capacitors:	
C1	- $1 \mu / 10 \mathrm{~V}$ electrolytic
C2, C4	- 0.01μ ceramic disk
	- 10ر/10V electrolytic
C5	- $22 \mu / 10 \mathrm{~V}$ electrolytic
	- $1000 \mu / 16 \mathrm{~V}$ electrolytic
Miscellaneous:	
RL1	- 6V/100-ohm relay
S1, S2	- tactile switch
S3	- On/off switch
	- DC power supply

digits), the tap A needs to be connected to O3. Similarly, for 16-bit code, point A is to be connected to 04 , and so on.

Operation

When the power supply to the circuit is initially switched 'on', IC2 and IC5 are reset, as explained earlier. Both A0 and B0 inputs to IC4 are zero and thus its output at pin 3 is 'high' and hence IC1 is enabled. But, since pin 2 of IC1 is pulled 'high' via resistor R1, output of IC1 is initially 'low'. Initially, all ICs are in their reset positions because of the capacitors connected to their reset pins.

Assume that the required code number is lodged in the EPROM and point A is joined to appropriate output of IC2 depending on the length of lodged code, as discussed in the description of relay operation. Then, lock relay can be energised by inputting the correct binary code seri-
ally via IC5 with the help of switches S1 (marked zero) and S2 (marked one). A 'zero' is entered by momentarily depressing switch S1 alone, and a 'one' is entered by depressing switch S1 momentarily, after holding switch S2 in the pressed condition.

The 'DO' bit of EPROM and 'OO' bit of shift register (CD4035) are compared by magnitude comparator (CD4585). If the two data bits are equal, the output of comparator remains 'high' and it does not interrupt/inhibit the operation of monostable IC1 (NE555). However, if there is a mismatch, the output of com-
parator goes 'low' and it inhibits IC1. Thus, further data would not get entered in the absence of clock pulse from IC1. If data at each location of EPROM keeps matching with the data input via switches S1 and S2, the output of comparator (at pin 3) will continue to stay 'high' to keep IC1 enabled until all the bits of the code have thus been compared. At the end of the code, the tap A will be at logic 1, to energise relay RL1. If you have by mistake entered wrong code via switches S1 and S2, you can try again by switching 'off' and then switching 'on' the circuit once again, using 'on'/'off'
switch S3.
Please note that for locking, the circuit need not play any role. The locking operation could be performed manually. Only for opening of the lock, this code lock may be used. However, you are at liberty to use the lock the other way around.

An actual-size, single-sided PCB for the circuit of Fig. 1 is shown in Fig. 2, while Fig. 3 shows its component layout. One may extend/modify the circuit by utilising other seven unused data bits of EPROM as well (presently only bit DO has been used in this circuit).

CIRCUIT IDEAS

POWER-SUPPIY FAILURE ALARM

M.K. CHANDRA MOULEESWARAN

S.C. DWIVEDI

Most of the power-supply failure indicator circuits need a separate power-supply for them-
transistor T1. Since, in the absence of mains supply, the base of transistor is pulled 'low' via resistor R8, it conducts
the components are not critical. If the alarm circuit is powered from any external DC power-supply source, the mainssupply section up to points ' P ' and ' M ' can be omitted from the circuit. Following points may be noted:

1. At a higher DC voltage level, transistor T1 (BC558) may pass some collec-tor-to-emitter leakage current, causing a continuous murmuring sound from the selves. But the alarm circuit presented here needs no additional supply source. It employs an electrolytic capacitor to store adequate charge, to feed power to the alarm circuit which sounds an alarm for a reasonable duration when the mains supply fails.

During the presence of mains power supply, the rectified mains voltage is stepped down to a required low level. A zener is used to limit the filtered voltage to 15 -volt
level. Mains presence is indicated by an LED. The low-level DC is used for charging capacitor C3 and reverse biasing switching transistor T1. Thus, transistor T1 remains cut-off as long as the mains supply is present. As soon as the mains power fails, the charge stored in the capacitor acts as a power-supply source for

and sounds the buzzer (alarm) to give a warning of the power-failure.

With the value of C3 as shown, a goodquality buzzer would sound for about a minute. By increasing or decreasing the value of capacitor C3, this time can be altered to serve one's need.

Assembly is quite easy. The values of
buzzer. In that case, replace it with some low-gain transistor.
2. Piezo buzzer must be a continuous tone version, with built-in oscillator.

To save space, one may use five smallsized $1000 \mu \mathrm{~F}$ capacitors (in parallel) in place of bulky high-value capacitor C3.

STOPWATCH USING COB AND CALCULATOR

ANANDAN M.A.

The heart of this circuit is a COB which is used in quartz clocks. SCR1 is used for 'start' and 'stop' operations. LED1 used in the circuit serves two purposes. It provides the path to satisfy the minimum holding current
requirement (about 6 mA for a low-power SCR) for the SCR, to maintain it in 'on' state. By placing the LED in the vicinity of LCD, one can read the display even during darkness. The positive going output pulses from the two points of the COB
(from Ajanta timepiece used by EFY) are combined to obtain one pulse per second output across resistor R4.
(EFY Lab note: Please note that COBs used in different docks may give different outputs-frequency as well as polarity-which may necessitate reversal of diodes, use of additional transistor inverter stage, and modification of key operation sequence of calculator.)

The voltage developed across resistor R4 provides forward bias for transistor T1. Transistor T1 conducts and switches 'on' the optocoupler, whose output (across col-

www.electronicsforu.com

lector and emitter of the in-built transistor) is connected to the two terminals of the ' $=$ ' (of Casio FX-82LB used duringactual testing at EFY) button's keypad tracks, with collector connected to the more positive terminal than the emitter. Thus, once every second the ' $=$ ' button is activated.

To operate the calculator in stopwatch mode, switch on the calculator and press the keys in the following sequences:
(a) F or seconds mode: [1][+][+]
(b) For minutes mode: $[6][0][1 / x][+][+]$
(c) For hours mode: $[3][6][0][0][1 / x][+][+]$

Note: The invoking of function ($1 / x$) in different calculators may require pressing of a function key marked 'INV' or 'SHIFT' or '2ndF', etc. Hence, use the appropriate key in your calculator for $1 / \mathrm{x}$ operation.

For accurate starting, press the '0' key to reset the count immediately after pressing the start switch. (However, if you desire upcounting from a number other than '0' second/minute/hour in respective modes, you may do so by keying that number immediately after pressing start switch.) The final reading can betaken by pressing the stop switch. The fractional portion of the results obtained during minutes mode and hours mode can be converted to sexagesi-

mal notation (i.e. degree, minute, second) by invoking " ' ' " ' key. For example, a display of 5.87 in hour mode will get converted to 5, 52,12 ($5 \mathrm{hrs}, 52 \mathrm{~min}$., and 12 sec .) when one invokes " ${ }^{1} 11$ 'function key.

For downcounting in seconds, minutes, or hours mode, the procedure as outlined in the preceding paragraphs is to be followed except that keys [-][-] should be depressed in place of $[+][+]$.

Pause/hold can be achieved by pressing the ' $=$ ' key continuously, or pressing switch S2. Intermediatetime can bestored by pressing the 'Min' key. This reading can be retrieved by pressing the 'MR' key, after the stop switch has been pressed.

This circuit can easily be installed inside the calculator. There is a vacant space
of $60 \times 22 \times 6 \mathrm{~mm}$ inside the Casio FX-82B calculator. By using a chip LED, the size restriction for installing the LED can be overcome. It can be placed near the LCD display to provide indication of the functioning of the stopwatch. The whole circuit can be assembled on a $55 \times 20 \mathrm{~mm}$ PCB. The start/stop tactile switches can also be installed inside, with their operating lever popping out through a cutout above the keypad.

You may find certain keypad buttons such as 'hyp' which you may never require to use. Two such buttons can be removed to create place for 'start' and 'stop' switches, if required. By this arrangement, you can start or stop the clock, without affecting its working.

DIAL A VOITAGE

RATHINDRA NATH BISWAS

In a conventional voltage-divider setup, the fixed voltage is applied across the entire network and the output is taken from across a selectable tap. Although this approach provides precision

vides precision DC voltages from 0 to 10 volts, in steps of 0.01 V , can be easily and economically built using a circular voltage divider. In this simple divider arrangement, the points across which the output
is taken remain fixed, while the voltage source is moved from one pair of points to another.

As shown in the diagram, a total of 31 resistors are required to provide settability to within 0.01 V . There are a total of three such dials. Each dial has ten resistors, except the last one (dial III), which contains eleven resistors. Dial 1 has ten resistors, having a value of 1 kiloohm each. It is marked from 0 to 9 volts voltage output, it involves complex switching and unusually large number of resistors. Thus, it is not economical, as precision re sistors are quite expensive.

A bridge that pro-

in 1-volt steps. Dial II has ten resistors of 1,100 -ohm value each. This dial is marked from 0 to 0.9 volt in 0.1 volt steps. Dial III has eleven resistors, having a value of 1,210-ohm each, with dial marking from 0 to 0.09 volt in 0.01 volt steps. The values of the resistors in a given ring are 1.1 times the values of the resistors in the preceding ring. The bridge shown in the illustration would read the value of unknown voltage as 6.43 volt (when the null detector reads ' 0 ') as detailed below:

Dial I	-	6 volts
Dial II	-	0.4 volt
Dial II	-	0.03 volt
Total	$:$	6.43 volt

Note: 1. For the above example, the equivalent circuit has been reduced to a simpler form by EFY-in three stages, as shown in Fig. 2, for the benefit of the readers.

more closely the bridge output can be read. If l ower value resistors are used, the bridge
2. Please do not confuse the dial voltages mentioned inside each of the thre dials with the actual voltages across the associated resistors, which would be different.

The tighter the tolerance of the resistors, the more accurate will be the measurement of the unknown voltage. For null detection, any micro-ammeter or galvanometer can be used. However, the more sensitive the null detector is, the
output impedance becomes lower. However, this would increase the power dissipation in the bridge.

The principal limitation of this arrangement is the allowable power dissipation of the resistor in the first ring, across which the full supply voltage is applied. Resistors in dial I must be able to withstand the full supply voltage of 10 volts. Regulated power supply (10-volt) only should be used in this circuit.

ELECTRONIC DANCING PEACOCK

C.K. SUNITH

of LEDs arranged according to a predetermined pattern.

The circuit is built around two dual J K flip-flop ICs 7476, which have been wired as a Johnson counter. The count sequence of this counter is shown in Table I. The free running oscillator built around IC1, a popular timer NE555, gen-

AII of you must have observed a dancing peacock, spreading out its beautiful feathers, turning
around, closing them, and then doing it all over again. The author has attempted to reproduce a similar effect using a set

J ohnson Counter Count Sequence					
D	C	B	A	Decimal	LED's LIT
MSB		LSB	Count	Upon Count	
0	0	0	0	0	Nil
0	0	0	1	1	L1 to L3
0	0	1	1	3	L1 to L7
0	1	1	1	7	L1 to L11
1	1	1	1	15	L1 to L15
1	1	1	0	14	L4 to L15
1	1	0	0	12	L8 to L15
1	0	0	0	8	L12 to L15
0	0	0	0	0	Nil

erates approximately 1 Hz waveform. The output of IC1 serves as the clock input for the counter built around IC2 and IC3.

The circuit can be reset by momentarily depressing switch S1. When the circuit is powered on, capacitor Cl will be initially uncharged, with the result that all the flip-flops are cleared. Now, as the capacitor starts charging toward the positive rail, the clear inputs of all the flipflops go to logic 1 (and stay there) and the flip-flops are enabled. The counter be-
gins to count in a particular sequence, as shown in Table I. Whenever the output of a flip-flop goes high, the associated transistor connected at its output saturates. It drives current through the array of LEDs connected as collector load, thereby causing them to turn 'on'.

Upon arrival of first clock pulse, the LSB will be set. The counter will now count 0001. This means that the array of LEDs at the centre of the display panel will be lit. When the next clock pulse arrives, logic 1 will also be copied to its preceding flip-flop and the counter will read 0011. As a result, the array of LEDs adjacent to the centre array (on both sides) will be lit. In this fashion, the count progresses upwards till it reaches 1111, when all the arrays of LEDs will be lit. Now the wings of the peacock are fully spread. At this stage, you may manually swing the display board both ways, holding it at its centre bottom by
your thumb and forefinger to resemble a dancing peacock.

The countdown sequence of the counter will be initiated upon the arrival of the next dock pulse, which causes the count to read 1110. At this stage, the array of LEDs at the centre of the display panel will be turned 'off'. The counter then counts down to 1100 upon the arrival of the next clock when the array of LEDs adjacent to the centre array (on both sides) will also be turned 'off'. In this manner, the counter continues to count down till the contents read 0000, when the whole array of LEDs are turned 'off' and one full cycle is completed. The counter then starts the counting sequence all over again.

The circuit can be assembled on a gen-eral-purpose PCB. The LEDs can be stacked into an array as per the pattern shown in the figure. The circuit requires both +5 V and +12 V DC supplies. The circuit can be used as a festival display.

INVERTER OVERLOAD PROTECTOR WITH DELAYED AUTO RESET S.C. DWIVEDI

SIDDHARTH SINGH

Δn overload condition in an inverter may permanently damage the power transistor array or burn off the transformer. Some of the domestic inverters sold in the market do not feature
an overload shutdown facility, while those incorporating this feature come with a price tag.

The circuit presented here is an overload detector which shuts down the in-
verter in an overload condition. It has the following desirable features:

- It shuts down the inverter and also provides audio-visual indication of the overload condition.
- After shutdown, it automatically restarts the inverter with a delay of 6 seconds. Thus, it saves the user from the inconvenience caused due to manually resetting the system or running around in darkness to reset the system at night.
- It permanently shuts down the inverter and continues to give audio warning, in case there are more than three

is connected as a Schmitt 'trigger', whose output goes low when the voltage at its pin 2 exceeds 3.3 V . IC4 (again an NE555 timer) is configured as a monostable multivibrator with a pulsewidth of 6 seconds. IC5 (CD4017) is a CMOS
successive overloads. Under this condition, the system has to be manually reset. (Successive overload condition indicates that the inverter output is short-circuited or a heavy current is being drawn by the connected load.)

The circuit uses an ammeter (0-30A) as a transducer to detect overload condition. Such an ammeter is generally present in almost all inverters. This ammeter is connected between the negative supply of the battery and the inverter, as shown in Fig. 2. The voltage developed across this ammeter, due to the flow of current, is very small. It is amplified by IC2, which is wired as a differential amplifier having a gain of 100. IC3 (NE555)
counter which counts the three overload conditions, after which the system has to be reset manually, by pressing push-toon switch S1.

The circuit can be powered from the inverter battery. In standby condition, it consumes 8-10 mA of current and around 70 mA with relay (RL1), buzzer (PZ1), and LED1 energised. Please note the following points carefully:

- Points A and B at the input of IC2 should be connected to the corresponding points (A and B respectively) across the ammeter.
- Points C and D on the relay terminals have to be connected in series with the already existing 'on'/'off' switch leads
of inverter as shown in Fig. 1. This means that one of the two leads terminated on the existing switch has to be cut and the cut ends have to be connected to the pole and N/O contacts respectively of relay RL1.
- The ammeter should be connected in series with the negative terminal of the battery and inverter, as shown in Fig. 2.

Move the wiper of preset VR1 to the extreme position which is grounded. Switch 'on' the inverter. For a 300W inverter, connect about 250-260W of load. Now adjust VR1 slowly, until the inverter just trips or shuts down. Repeat the step if necessary. Use good-quality preset with dust cover (e.g. multi-turn trimpot) for reliable operation.

The circuit can be easily and successfully installed with minimum modifications to the existing inverter. All the components used are cheap and readily available. The whole circuit can be assembled on a general-purpose PCB. The cost of the whole circuit including relay, buzzer, and PCB does not exceed Rs 100.

TELEPHONE LINE BASED AUDIO MUTING AND LICHT-ON CIRCUIT

DHURJATI SINHA

Very often when enjoying music or watching TV at high audio level, we may not be able to hear a tele-
(opto-coupler) conducts and capacitor C1 gets charged and, in turn, transistor T1 gets forward biased. As a result, transis-
tor T1 conducts, causing energisation of relays RL1, RL2, and RL3. Diode D1 connected in anti-parallel to inbuilt diode of IC1, in shunt with resistor R1, provides an easy path for AC current and helps in limiting the voltage across inbuilt diode to a safe value during the ringing. (The RMS value of ring voltage lies between 70 and 90 volts RMS.) Capacitor C1 maintains necessary voltage for continuously forward biasing transistor T1 so that the relays are not energised during the nega- phone ring and thus miss an important incoming phone call. To overcome this situation, the circuit presented here can be used. The circuit would automatically light a bulb on arrival of a telephone ring and simultaneously mute the music system/TV audio for the duration the telephone handset is off-hook. Lighting of the bulb would not only indicate an incoming call but also help in locating the telephone during darkness.

On arrival of a ring, or when the handset is off-hook, the inbuilt transistor of IC1

CIRCUIT IDEAS

tive half cycles and off-period of ring signal. Once the handset is picked up, the relays will still remain energised because of low-impedance DC path available (via cradle switch and handset) for the in-built diode of IC1. After completion of call when handset is placed back on its cradle, the low-impedance path through handset is
no more available and thus relays RL1 through RL3 are deactivated.

As shown in the figure, the energised relay RL1 switches on the light, while energisation of relay RL2 causes the path of TV speaker lead to be opened. (For dual-speaker TV, replace relay RL2 with a DPDT relay of 6V, 200 ohm.) Similarly,
energisation of DPDT relay RL3 opens the leads going to the speakers and thus mutes both audio speakers. Use 'NC' contacts of relay RL3 in series with speakers of music system and ' NC ' contacts of RL2 in series with TV speaker. Use 'NO' contact of relay RL1 in series with a bulb to get the visual indication.

August

DISPLAY SCHEMES FOR INDIAN LANGUAGES-Part I [HARDWARE AND SOFTWARE]

K. PADMANABHAN, S. ANANTHI, K. CHANDRASEKHARAN, AND P. SWAMINATHAN

For displaying text of Hindi, English, or any other Indian language on a TV-like screen, as may be required for public announcements or for educative programs etc, presently there are two possible ways:

1. Use a personal computer (PC), with all its hardware, such as the hard disk, monitor etc, and develop or buy a suitable software to display such text on its screen using its keyboard.
2. Develop a dedicated low-cost microprocessor based system employing a CRT controller circuit, with suitable firmware for each of the languages.

This article provides the software for use with a PC based system as well as use of a dedicated microprocessor based system, complete with circuitry and firmware programs. Incidentally, it introduces an important aspect concerning coding of text characters for Indian languages and provides an efficient solution. The software developed for both the above schemes of display is based on the proposed simplified coding solution.

ASCII codes and Indian languages

The typewriter for the English language, along with its mechanism, has been already adopted for almost all of our Indian languages with practically no change in its layout. The positions of keys and their operation remain unchanged. It has the same four rows of keys, including shift and space keys, with top row for numerals, and so on.

The combination vowels in Indian Ianguages such as 'oo' are made as separate 'hook' characters, which upon stroke are non-space-moving. Persons involved in development and adoption of the English keyboard have deverly tackled the problem of typing the large number of charac-
ters involved in most of the Indian languages, in contrast to a mere $52(2 \times 26)$ characters in English language. In spite of the fact that Hindi, or for that matter Tamil or Telugu etc, have to deal with a large number of basic consonants, which combine, singly or doubly, with a similarly large set of vowels, the four-row keyboard deals with all of them adequately to ensure fast typing. Our trained typists are able to make up to 40 strokes per minute (approximately 15 words per minute) in the most intricate of I ndian languages.

Today, there is both a concern and talk in several circles, e.g. computer, telecommunications, and other hi-tech industries, to develop a new type of keyboard Iayout for Indian languages, with the aim of making the software devel opment task easy enough. In this context, phonetic keyboards have been proposed and are also in vogue already, with a great deal of software available commercially. These keyboards do not make use of hook characters, but then such a keyboard is not well suited for training.

Generally, typewriting is a process based on direct eye-to-limb reflex signal generation, with little thinking going on deep down in the brain. If the typist looks at a letter 'hu', he presses the 'ha' key first, and as he sees a hook 'oo' below it, he strikes the corresponding hook key, and so on. Thus the process can be speeded up with practice and is not easily forgotten. We know of language typists, who even after 30 years of work, continue to type as fast as they did when they were young. Some of them can even talk while typing without missing anything.

Now, consider the phonetic keyboard typist. He has to split each letter mentally into its vowel and consonant parts; find out the consonant key and the hook key, and then press them in proper se-
quence. Here, the direct eye-to-finger reflex does not take place, because there is a thinking process involved. For example, for typing 'hoom', he has to know the grammer to split that into a 'ha', a 'oo', and an 'mm'. Thus the typist does not pick up speed even after considerable practice, and as a result fatigue sets in quickly for him.

As mentioned earlier, the Indian Ianguages have more characters than those in the English language. The well-known ASCII codes for English are just 128 in number, including several control characters and punctuation marks. Each code occupies one byte and hence the total code space is 7FH for the complete English set. With our Indian languages, we have varied sets of characters. Consonants arequite many, and therefore it is not easy to accommodate all characters within the same set space of 128 . For this purpose, the author proposed a scheme of forming such ASCII-like codes for Hindi as well as other Indian languages, which occupy a space of 128 bytes only for each. Based on thestandard typewriter format for English, Hindi, Tamil etc, a method for typing text of these and other languages, all simultaneously, is described in this article.

This proposed scheme of coding would not cause any disturbance to the present typists of these languages. They do not have to undergo fresh training for using the proposed keyboard.

The method of making the ASCII code set for any Indian language is based on the typist's existing keyboard. For example, in English, the letter 'd' has its code as 64 H . So, the code for the Hindi letter 'ka' (क) is also 64 hex. For Tamil ASCII code 64 hex is used for 'na', and so on..for the other languages. A table of such codes for the three languages Hindi, English, and Tamil is shown in Tablel.

Character generator for Indian Ianguages. While characters of any language need a character generator, which puts dots in a rectangular matrix to depict the shape of the character on the screen, the English language, in its simplest form of display, manages to write all its characters within a 5×7 matrix. Therefore, within an 8×8 matrix, there is enough gap to allow for inter-character and inter-row space. But, in Hindi and

for all the text characters in a manner as shown in Table I, it is now required to put the dots for each code into the character generator. Thus, we specify text only by its codes. For example, for English letter ADD, the code is 41, 44, 44. The actual dots are available within the character generator, and hence the space needed for storing text is just limited to the characters or strokes. But, in other schemes generally employed in other software, the text is stored as graphic patterns and hence quite a l a r g e
our other Indian languages, we cannot manage to use even a simple font within this 8×8 matrix (which needs one byte per line or 8 bytes per character). The smallest size in Indian language requires a 12×12 matrix, and hence we need $1.5-$ byte space horizontally and a total of 12 x $1.5=18$ bytes space for each letter. Further, if one wants better looking fonts,
for instance like the standard Time Roman of English, more dots need to be shown, and hence the character slot size will be even greater than 12×12 dots.

In the proposed scheme a 12×12 dot font size is used, both for the dedicated microprocessor based display scheme as well as for the PC based scheme.

Since we have already specified codes
amount of memory is needed.
Now take a look at the keyboardrow by row. The top row contains numerals. Next row starts with ' Q ' and ' q ' (in English) and is used for 'PHA' and 'u' hook in Hindi with and without shift key pressing, respectively. So, these have the same ASCII equivalent codes, i.e., 51 hex and 71 hex, respectively.

Fig. 1(b): 6845 character and video generator portion of multilingual display system

The character generator is just a list of dots for the characters in an order. It does not necessarily require any hardware. Though such a list of dots, if stored in this order in an EPROM, can be a hardware component. In the PC based design, this is just a file containing the dot patterns, while in the design using a dedicated CRT controller with a microprocessor, this is actually a hardware component, i.e. an EPROM.

Addressing mode for character generator file scheme Let us take letter ' d ' in Hindi, which has the ASCII-equivalent code of 64 hex. We need a high address and a low address as usual. Supposing
the high address for Hindi starts at page 10 and it goes up to page17 (with each page comprising 256 bytes). In page 10, locations 00 through 7F are used for storing the low addresses while 80 through FF are used for storing high addresses for each character. Accordingly for 'd', the low address is stored at 1064 and the high address at 10 E4 $(1064+80=10 E 4)$. If we have a look at the hex contents of these two locations, we shall find:
Address Data Comments 1064 B4 LS Byte of Address 10 E4 04 MS Byte of Address

Note: The page/location-wise hex contents of file containing these indi-
rect addresses and dot codes are proposed to be issued in EFY-CD during Sept. 2000.

It means that the actual code is starting from the address 14 B4 (1000 +04B4). So, this is indirect addressing mode. The actual hex values of the dots for each of the twelve lines (in 18 bytes) for 'd' are stored at consecutive locations, starting with address 14B4, as stated earlier.

This indirect addressing scheme is used because it enables us to use different types of fonts later, by just pointing to a different address table. Also, the address table corresponds to the ASCII code,

Fig. 2: Keyboard for English, Hindi, and Tamil languages

Fig. 3: Character code generation in 12×12 format
just as in 'd', with 64 being the code. The table low-address is also 1064 and the high address equals 1064 +80 , and so on. Further, we need not even write these codes in any order, because we are at liberty to write any address in the look-up table! (That works really when we ask several persons to prepare the font codes and mix them together!)

How exactly does one prepare the table of dots? Take a graph sheet and make 12×12 rectangles. Paint the character in this slot, as it would appear when printed. The dots must be darkened to show up the character. Positioning is important; one has to make sure that hooks, if appended to this character, will fall within the space of 12×12 without cutting or merging. For example, 'kra' and 'ku' and 'koo' writing must be possible by adding these respective hooks to the character, if required. Then, looking at Fig. 3, for 'ka' (क), we read the dots (in nibbles) in complimentary form and write them down as under:
Line 1.. 000 Line 5 .. 010 Line 9 ..1D6
Line 2 .. 000 Line 6 ..1D6 Line 10 .. 010
Line 3 .. 000 Line 7 .. 139 Line 11 .. 000 Line 4 ..FFF Line 8 .. 139 Line 12 .. 000

The values are complemented and written as two nibbles at a location. Complementing is necessary to make FF appear as blank on the screen. The table thus obtained for 'ka' (क), occupying 18 bytes (36 nibbles), is shown below:

```
Address
```


Code

```
14 B4 FF FF FF FF F0 00 FE FE
14 BC 29 EC 6E EE F01E FE FF
```


14 C5 FF FF

The table for each language will not need more than 8 pages in an EPROM or $2 k$ bytes in a file. Thus in one 2764, it is possible to house the character generator codes for four languages, say English and three other Indian languages.

PC based design

In the PC based design, the software written in BASIC loads a table of codes from a file. This file is having the same data as the EPROM in the dedicated microprocessor based design.

The software for the computer based display is made simple enough to be used with any PC, without the need for large memory or disk space. It could work even with one floppy system, with just a 386 based PC even. The C+ or other Ianguages are more library oriented and require a hard disk to work with. The C++ library already has different fonts and sizes for English and we use this library to write varied size of text on screen in English. But, until the library for Indian languages becomes similarly available, the C ++ is of no use here. Software makers would have made fonts for several Indian languages, but they have not put them in a library form as the promoters of the ' C ' language did it for English language. No libraries for video display for Indian Ianguages are currently available exploiting the compactness of the $C++$. Until then, we need to write code as and when we want, and hence BASIC is better suited.

Hence this program has been developed in BASIC rather than C++ or other Windows based software, for the simple reason that it could be used for education by institutes possessing even simple PCAT computers.

The program for a computer based

Hindi, English, and Tamil display is given in BASIC language on page 49. This works on an IBM PC with no restrictions of memory, and can work directly from a single floppy. This minimises the cost of the computer system for the display. The program given is based on Turbo BASIC version 1.0, but the same is compatible with Quick BASIC or other similar BASIC interpreter-compilers working on the PC.

The program first loads the file for characters for four languages. Then the user is asked to enter F1 to F4 keys to select the language and S or L (capital) for selecting small or large-size font. Any time during typing text on screen, the function keys may be pressed to change the language, if desired.

F1..Tamil
F2 ..English
F3 ..Tamil
F4 ..Fourth language
The character generator here is a file. It contains the same set of codes that are used for the hardware based design that follows. This is stored as file 'chtamil2', which is read and saved in the array 'ad (lan\%,I\%)' that stores the dots. This array is used in the program throughout.

That makes it convenient to type several sentences, up to 30 in a VGA monitor screen on the computer, and then on the next screen. For example, on one screen, a Hindi poem could be typed together with its English and Tamil translations.

Printing a page is simply done using the 'Graphics.com' program, which comes with DOS. This must be run prior to running BASIC as:

A> Graphics
 Then
 A> BASIC

After entering text on one page, it can be printed using shift + print screen keys.

This program is a simple version, and other versions with file storage and printing facility can be prepared with extra statements.

For the use of the typist, it is necessary to write the character strokes of the respective language(s) on key tops of the IBM PC keyboard, at least during the initial typing stage.

Note: The program in BASIC, together with its compiled .EXE file, will be presented in Sept. 2000 EFY-CD. The 8 kilo-byte 'chtamil2' file containing the

TABLE I：ASCII Key Codes for English，Hindi，and Tamil Ianguages

ASCII CODE	ENGLISH	HINDI	TAMIL	ASCII CODE	ENGLISH	HINDI	TAMIL
20	SPACE	SPACE	SPACE	41	A	T（ h ）	0
21	$!$	x	m	42	B	б	（1）
22	＂	1	«	43	c	$\bar{\square}$	2 m
23	$£$	：	\％	44	D	あ	ற1
24	\＄	$=$	8	45	E	ᄃ	H
25	\％	－	－	46	F	\imath^{-}	(8)
26	\＆	＂	\rightarrow	47	G	б	4
27	，	？	\＆	48	H	2	4
28	1	दद	\checkmark	49	I	τ	\％
29	）	त	1	4 A	J	श	5
2A	＊	σ	5	4 B	K	ET	10
2 B	＋	रु	${ }^{\circ}(\mathrm{h})$	4 C	L	F	\bigcirc
2 C	，	［	（8）	4 D	M	5	3
20	－	c（ ${ }_{\text {c }}$	1	4 E	N	ξ	${ }_{6}$
2 E	－	σ	，	4 F	0	－（미）	Le
2 F	1	$\overline{9}$	\therefore	50	p	च	\％（f）（h）
30	0	0	0	51	Q	－फ（h）	）ந1
31	1	1	1	52	R	7	${ }_{61}$
32	2	2	2	53	S	2 （h）	$\mathscr{5}$
33	3	3	3	54	T	$\bar{\sim}$	On
				55	u	\bar{F}	－15
お	9	9	9	56	v	ᄃ	ๆ
3A	：	ई	\square_{5}	57	w	\sim	M
38	；	य	$\stackrel{\square}{7}$	58	x	J	$\stackrel{3}{\text { a }}$
3 C	$<$	ζ	1.	59 58	Y	～${ }_{\text {c }}$（和	\％
30	$=$	（19）	ω°	58	［	\％	e（b）
3 E	＞		？	5C	j	－${ }^{\text {a }}$	．．．
3 F	？	ε	－	． 5 E	\wedge	．．．	．．．
40	＠	む	T	5 F	－	．．．	．．．
60	＇		2（ロ0）	$6 E$	n	$\overline{6}$	6
61	a	म $^{\circ}$	（h）us	6 F	0	व	4
62	b			70	p	च	1 （h）
63	c	ब	2	71	q	$u^{(h)}$	$\underset{\text { w }}{\text { ¢ }}$
64	d	क	ण1	72	r		－
65	e	प	5	73	s	1 （h）	๓
66	f	p	■	74	t	ज	2
67	9	ह	U	75	u	न	D
68	n	4	π	76	v	31	ๆ
69	i	\square	m	77	w	へ（ ${ }^{(\infty)}$	9
6A	J	₹	פ	78	x	ग	9
68	k	T（\＄）	（क） 10	79	y	而	v
6C	1	स	レ	7 A	z	प्र（h）	07
6 D	m	3	H	78	\｛	－（fulls	stop）$<$
（h）denotes hook character．				$7 C$ 70	1		

Program in BMSIC for Gomputer Based Display for English, Hindi, Tamil, etc languages

$\operatorname{dim} C(3,2048), a d(3,257), d(12), q(8)$
open "chtamil2" for random as \#l len=1
field \#1, 1 as A\$
cls
total $\%=$ LOf(1)
for $\operatorname{lan} \%=1$ to 3
for i\%=0 to 255 'total\%
get \#l 'get one byte
rem pick and store the address for all 256 codes
a= asc(a\$)
' print a;
ad(lan\%,i\%) =a
rem low address in 00-7F and high add. in 80
$n=n+1$
next
for i\%=3 to 1024*2-254'total\% -256
get \#1
? i\%-3,asc(a\$)
c(lan\%,i\%-3)= asc(a\$)
next
next lan\%
CLOSE \#1
lang\%=2
on key(1) gosub 500:key(1) on
on key(2) gosub 510:key(2) on
on $\mathrm{key}(3)$ gosub 520:key(3) on
ON KEY(11) GOSUB 540: KEY(11) ON
ON KEY(12) GOSUB 550: KEY(12) ON
ON KEY(13) GOSUB 560: KEY(13) ON
ON KEY(14) GOSUB 570: KEY(14) ON
690 CLS: locate 10,15: ?'Type F1 key for
Tamil, F2 for English and F3 Hindi"
? "Want small or large size font ? Press S or
ad $\$=$ input $\$(1)$
if ad\$="S" then screen 12 : goto 700
if ad\$ $=$ 'L" then screen 2: goto 700
goto 690
$700 \mathrm{cls}: s=0: r o w=0$
i=0
$s=1: R=1: L=0$
hook $=0$
2 if lang\%=2 then hook=0
if hook $=1$ then $s=s-1$
if $s<0$ then row=row-1: $s=40$
21 A\$=inPUT\$(1): 'got a key
$\mathrm{N}=\mathrm{ASC}(\mathrm{A} \$)$
'locate 20,51 print n
'goto 2
REM remove old cursor
$x=s^{*} 12: y={ }^{\circ} w^{*} 16+11$
for $\mathrm{jj} \%=1$ to 10
pset $(x+j j \%, y), 0$:next
if $S>40$ then $\mathrm{S}=0:$ Row=Row +1
if $n=8$ then $s=s-1$:gosub 300 'backspace
if $N=32$ then $s=s+1$:gosub cur: goto 2 'space
if $\mathrm{N}=10$ then row $=$ row +1 :goto 2 'return
if $N=13$ then row=row $+1: s=0$: goto 2 'line feed if lang\% $=1$ then
REM This is for TAMIL HOOK characters
if $\mathrm{N}=80$ then hook=1 :goto 23
if $\mathrm{N}=112$ then hook $=1$:goto 23
if $N=91$ then hook=1 :goto 23
if $\mathrm{N}=123$ then hook=1 :goto 23
if $\mathrm{N}=43$ then hook $=1$:goto 23
if $\mathrm{N}=59$ then hook $=1$:goto 23
hook $=0$
end if
if lang\%=3 then gosub 400
' if $N=8$ then $s=s-1$: goto 300 : 'hook $=1$:
goto 23
'if $n=28$ then $s=s+1$:goto 300
'if $n=30$ then row=row +1 :goto 2
hook $=0$
23 n1 = ad(lang\%,n) :n5=n1
n2 $=$ ad(lang $\%, n+128$)
$\mathrm{n} 3=(\mathrm{n} 2-1) * 256+\mathrm{n} 1$
N1=(n3):
$\mathrm{j}=0$: for $\mathrm{i} 1=0$ to 17 step 3
$i=1$
$d(j)=16 * c(l a n g \%, n 1+i)+C(l a n g \%, n 1+\dot{+}+1) \backslash 16$ $\mathrm{d}(\mathrm{j}+1)=256 *(\mathrm{c}($ lang $\%, \mathrm{n} 1+\mathrm{i}+1) \bmod 16)+$ c(lang\%,n1+i+2)
j=j+2
next i1 : $j=0$
for $\mathrm{i}=0$ to 11
'?i; hex\$(d(i))
next :' ?n, n5, n2
for $I=0$ to 11
$\mathrm{n}=\mathrm{d}(\mathrm{I}): \mathrm{i}=0 \quad: \mathrm{k} \%=15$
gosub 10 'put pixels
next I
$\mathrm{s}=\mathrm{s}+1$
gosub cur
goto 2
'put cursor
cur:
$x=s^{*} 12: y={ }^{\prime} w^{*} 16+11$
for $\mathrm{jj} \%=1$ to 10
$\operatorname{pset}(x+j \mathrm{j} \%, \mathrm{y}), 15$:next
return
end
rem given a number $<256 * 8$ put pixels
$10 r=n \bmod 2$
? r ;
$q(i)=$
$x=S * 12$: $y=R o w * 16+1$
100 i $=1+1$
if $\mathrm{i}>=12$ then 200
$n=n \backslash 2$
goto 10
200 for $\mathrm{j} \%=0$ to 11
if $q(11-j \%)=0$ then $\operatorname{pset}(x, y), 15$
$x=x+1$
next
return
300 for I $=0$ to 12
$x=s^{*} 12$: $y=r o w * 16+1$
for j\% = 1 to 12
' $n=4096$: $\mathrm{i}=0$
pset $(x+j \%, y), 0$
'gosub 40 'put pixels
next j\%
next I
goto 2
$40 r=n \bmod 2$
? r ;
q(i) $=$ r
$x=S^{*} 12$: $y=R o w * 16+$
101 i=i+1
if $\mathrm{i}>=12$ then 201
$\mathrm{n}=\mathrm{n} \backslash 2$
goto 10
$201 \mathrm{~s}=\mathrm{s}-1$
for $j \%=0$ to 11
'pset $(x, y), 0$
if $q(11-j \%)=1$ then $\operatorname{pset}(x, y), 0$
$x=x+1$
next
't\$=input $\$$ (1)
return
500 rem language selection
lang\%=1
return
510 lang\%=2:return
520 lang\%=3:return
REM HINDI HOOKs
400 if $n=45$ then hook $=1$:goto 630
if $n=61$ then hook=1:goto 23 '; The sanskrit hook for word ends
if $n=81$ then hook=1: goto 23 '; The adjunct to "Pa" to make "PPa"
if $n=113$ then hook=1 :goto 610 '; The u hook as in Pushpa
if $n=65$ then hook=1 :goto 23 '; the " n " part of
"Gend"
if $n=83$ then hook $=1$: goto 23 '; the Ttha part of kuttha
if $\mathrm{n}=87$ then hook=1: goto 23 '; The 00 m symbol as in hoom
if $n=90$ then hook=1: goto 23 ';as in "rka", the top "rr"
if $n=119$ then hook=1:goto 620 '; 00 as in Koo
if $n=97$ then hook=1: goto 23 ';dot top as in
if $\mathrm{n}=115$ then hook=1:goto 23 '; The "Ey" hook as in "Gend"
if $\mathrm{n}=122$ then hook=1: goto 23 '; "Pna" as in APna
return
540 gosub remcur:ROW=ROW-1 :RETURN
550 GOSUB REMCUR :S=S+1: RETURN
560 GOSUB REMCUR: $S=S-1:$ RETURN
570 GOSUB REMCUR: ROW=ROW+1:
RETURN
600 rem hindi 13th line hook points
$610 x=s^{*} 12$: $y=$ row*16+12
$i=3$
pset(x+i,y),15: i=8:pset(x+i,y),15:goto 23
$620 x=S^{*} 12$: $y=$ row $^{*} 16+12$
$\mathrm{i}=12$
pset $(x+i, y), 15$
goto 23
$630 x=S^{*} 12$: $y=$ row $^{*} 16+12$
$i=12$:
pset(x+i,y),15:goto 23
REMCUR:
$x=s^{*} 12: y={ }^{\prime} w^{*} 16+11$
for $j j \%=1$ to 10
pset($x+j \mathrm{j} \%, y$), 0 :next
RETURN
dot patterns for the four languages is re quired to be present in the working directory for the PC based program to work. This file is also proposed to be issued with Sept. 2000 EFY-CD.

Dedicated display unit design

A unit of this type is a low-cost solution for a public display. The circuits described in this section can be assembled on an
integrated single board within a cost of Rs 2,000 . The TV display of a 36 cm (14inch) monitor costs less than Rs 1,000 today, and the same video signal can be used for multiple positions.

This involves a simple 8085 microprocessor and an additional CRT controller. The dedicated CRT controller chip 6845 has been popular ever since it was first used by the IBM in its display controller cards. The circuit of this board is shown in Figs 1(a) and 1(b). It comprises:

1. Video generation circuitry including dot and character clocks.
2. Pixel or video RAM.
3. Character dot pattern EPROM for four languages
4. 8085 firmware on EPROM for four languages
5. 6845 CRT controller IC.

Fig. 1(a) shows the 8085 microprocessor and its signals. Crystal of 4 MHz between its pins 1 and 2 provides the clock for the processor to tick and work. Reset pin 36 is connected to get itself reset upon power on. Manual resetting is also possible using reset switch S1. The address-cum-data signal lines AD0-AD7 are connected to a 74L S373 latch to separate the address signals A0-A7, using the ALE pulse from pin 30 of 8085 . The data-bus connects to all devices such as EPROMs, RAM, and the 74245 bidirectional transceiver. Some of the data lines are also connected to output port (at I/O address 80) using a 7475 IC for providing four bits of outputs (D0' to D3'). The input port (also at I/O address 80) employing a 74365 caters to six bits of input. The PC keyboard data and clock signals are connected to data bus via two of its input lines.

The Address decoder is a 74156, which has open collector outputs. It enables one or two of the chip select decoded signals to be combined by just joining them (in wiredOR fashion). Using the address lines A12, A11, and A10, the decoder provides eight chip select signals for the address ranges as shown in the figure. Each output covers a $1 k$ memory range. Thus pins 9 and 10 (shorted) serve as the chip select signal for EPROM1 covering a 2 k memory address space. (Although we use 2764, an 8k EPROM actually since now-a-days only 8k EPROM ICs are easily available and easily programmable while 2 k capacity EPROMs are almost obsolete and difficult to program-we need 25 V programming pulse etc.) The address range for EPROM1 is 0000-07FF. Similarly, pins 11 and 12 are joined together to provide address range from 0800-0FFF. This is the chip select signal for the second ERPOM, which stores the character dot patterns for the

	PARTS LIST
Semiconductors:	
IC1	8085 8-bit microprocessor
IC2, IC21	- 74LS373 octal transparent
IC3, IC4	- 2764 8k byte EPROM
IC5	- 6264 8k byte RAM
IC6	- 74LS245 octal transceiver
IC7	- 74LS156 dual 2-line to 4-line decoder
IC8	- 74LS365 8-line to 1-line multiplexer
IC9	- 74LS75 4-bit latch
IC10, IC13	- 74LS02 quad NOR gate
IC11	- 74LS04 hex inverter
IC12, IC14	- 74LS00 quad NAND gate
IC15	- 74LS132 quad NAND Schmitt trigger
IC16	6845 CRT controller
IC17, IC18	- 74LS157 quad 2-line to 1 -line data selector
IC19	- 74LS244 octal bus buffer/ driver
IC20	- 62256, 32k byte static RAM
IC22	- 74LS165 parallel-in shift register
IC23	- 74LS190 synchronous decade counter
T1	- BC148B npn transistor
D1	- 1N4148 switching diode
LED1-LED4 - Red LEDs	
Resistors (all $1 / 4$-watt, $\pm 5 \%$ carbon, unless stated otherwise):	
R1-R5	1-kilo-ohm
R11-R16,	
R6, R17	- 4.7-kilo-ohm
R7-R10,	
R22-R23	- 220-ohm
R18, R19	- 10-kilo-ohm
R20	- 220-kilo-ohm
R21	- 680-ohm
VR1	- 470-ohm preset
Capacitors:	
C1, C3	- $1 \mu \mathrm{~F}, 16 \mathrm{~V}$ electrolytic
C2 - 22 pF ceramic disk	
Miscellaneous:	
Xtal 1	4 MHz crystal
PCKBD	- Keyboard interface connector

four languages. This too is a 2764, and the chip select signal ranges only 2 k , but the total 8 k range is for storing four language dot patterns, each in one 2 k range. Thus the selection of the range/language is done by signals from the 7475-output port bits D0' and D1', which are wired to A11 and A12 address lines of the 2764 character generator EPROM, which can be selected using the function keys as explained below.

The input port 80 H , using 74365 , is for reading the language selection made. The language is selected by pressing keys F1 through F4 on the PC's keyboard. This causes bits D0 and D1 to be output on the 7475 output ports to indicate the selection by two of the LEDs wired at its output. Two other bits, D4 and D5 of this input port, are connected to the data and clock pins of the IBM PC keyboard connector.

The RAM chip 6264 (8k memory) is used in the circuit. However, only 1 k (1000-13FF) of its address space is utilised. So, its 'high' address pins A11 and A12 are permanently made 'high'.

A chip-select $1(\overline{\mathrm{CS1}})$ is obtained from pin 6 of the 74156 IC, which covers 140017FF address range. This goes to select the video RAM 62256. Though a 62256 of 32 k memory is used, only 16 k is actually utilised. Its pin 1 is made permanent 'high'. This chip select uses the address lines A0 to A5 having an address range of just 64 bytes, just the low order memory of the video RAM.

A chip-select $2(\overline{\mathrm{CS} 2})$ signal is used to select a 74LS373 latch used with the video RAM circuit. This is used to supply the high order addresses (A6 through A13) to the video memory.

An additional chip-select $3(\overline{\mathrm{CS} 3})$ signal is used for accessing the 6845 CRT controller to program its mode of operation, so as to get a raster of 312 lines and 50 Hz frame frequency.

In the earlier design by the authors, an ASCII keyboard had been used. This ASCII keyboard used a dedicated keyboard controller IC, and the keys were wired in the fashion of the typewriter keys, making use of switches fixed on to a plain PCB and wiring the contacts to the IC as per its data sheet. There are ICs for making such an ASCII keyboard. The AY3-5376 is one such IC. The ASCII code for the key pressed is output as a 7bit code by this IC.

In this new design, the authors have used an IBM PC (AT) keyboard. The authors have given such a PC keyboard for their Home Computer Project (Refer EFY Electronics Projects, Vol. 11). This was a keyboard of the older type, the XT keyboard, but now the freely available (for Rs 300) AT keyboard has been employed for the current design.

The keyboard is labeled with English, Hindi, and Tamil characters, as per the standard typewriter format. The format for Hindi and Tamil characters are shown in Fig. 3.

The 8085 generates the control signals $I O / \bar{M}, \overline{W R}, \overline{R D}$ (active low signals). These are used in conjunction with 74LS02 and 74LS00 gates shown in Fig. 2(a) to obtain separate read and write control signals for memory or input-output, i.e. $\overline{M R}, \overline{M W}, \overline{I O R}, \overline{I O W}$ for use in the circuit.

To be continued next month

8085 ॥P-KIT BASED SIMPIE IC TESTER

S. RAJ KUMAR

AII electronic laboratories in engineering colleges and other institutions need a digital IC tester to verify the serviceability of frequently used digital ICs, e.g., ICs 7400 (NAND), 7408 (AND), 7432 (OR), 7486 (EXOR), 7404 (Hex Inverter), 7407 (Buffer) etc. The truth tables of all such ICs are available in digital IC data books. Based on their truth tables one can write suitable subroutines to test them using an 8085 microprocessor kit and a minimal of interface circuitry. An 8085 microprocessor kit, having requisite peripheral devices, is normally available in most electronic labs, and as such one does not have to buy costly IC testers for testing simple type of ICs, as mentioned above.

It is assumed that the kit has at least two 8255 PPI (programmable peripheral interface) ICs whose input/output ports have been extended via suitable connectors, for external usage. The configura-
TABLE I
Control Words

S.No.	Port APort C (Upper)	Port B	Port C (Lower)	Control Word (Hex)	
1	0	0	0	0	80
2	0	0	0	1	81
3	0	0	1	0	82
4	0	0	1	1	83
5	0	1	0	0	88
6	0	1	0	1	89
7	0	1	1	0	8 A
8	0	1	1	1	8 O
9	1	0	0	0	90
10	1	0	0	1	91
11	1	0	1	0	92
12	1	0	1	1	93
13	1	1	0	0	98
14	1	1	0	1	99
15	1	1	1	0	9 A
16	1	1	1	1	$9 B$
		1	1		

Note: $0=$ Output; I =Input
tion of the interface circuit required for testing of the digital 14-pin ICs using 8085 microprocessor kit is shown in Fig. 1. The interface circuit comprises simply a 14-

Fig. 1: Circuit for interfacing IC under test to 8255 PPIs on 8085 microprocessor kit
pin ZIF socket and two hex buffer 7407 ICs. The +5 V supply needed for the interface circuit (and ground) is obtained from the kit's power supply itself. The total cost of the interface circuit would be less than Rs 300.

Both the 8255s have been configured for mode ' 0 ' operation (which is a basic input/output mode) with registers A and B as output and register C (both upper and lower half) as input. The required control word for the mentioned configuration is 89 hex. The characteristics of mode ' 0 ' operation of 8255 are:

1. Two 8-bit ports referred to as registers A and B respectively.
2. Two 4-bit ports referred to as C register (lower-comprising bits C0 through C3) and C register (upper-comprising bits C4 through C7).
3. Ports configured as output have latched outputs while input ports are not latched.
4. Any port can be made input or output. There are 16 possible input/output configurations. (Please refer Tablel for a summary of the configurations and the control word required to be used during initialisation of an 8255 for each configuration.) Control word can also be formed with the help of Fig. 2.

The hex buffer/driver IC 7407 has open collector outputs. The outputs of 'IC under test,' which is placed in the ZIF socket, are combined with those of 7407 in a wired-OR (actually wired-AND) fashion. To realise this function, a logic 1 is always output on the 7407 gates connected to output pins of 'IC under test.' All possible logic input combinations are given to input pins of 'IC under test', while logic 1 is placed at all its output pins via 8255 's registers A and B, through IC 7407 buffers. For each input combination, the logic state of the ZIF socket pins (as modified by the 'IC under test') is read (after a short delay) via 'C' registers of the two 8255s. The expected results for each combination of inputs, for above-mentioned ICs, are shown in Table II in hex digits. These are stored in memory, in consecu-

IC Tester Program Environment			
MEMORY MAP (MAY VARY FROM KIT TO KIT):			
RAM LOCATIONS USED FOR PROGRAM :9200H -9450H			
STACK POINTER INITIALISED : 9FFFH			
PORTA (OUTPUT) OF A8255/B8255 : 08/10			
PORTB (OUTPUT) OF A8255/B8255 : 09/11			
PORTC (INPUT) OF A8255/B8255 : 0A/12			
CONTROL WORD REGISTER OF A8255/B8255 : 0B/13			
PROGRAM LISTING			
Add. Opcode	Label	Mnemonics	Comments
9200 31FF9F		LXI SP,9FFFH	
9203 21A093		LXI H,93A0H	
9206 3E00		MVI A,OOH	
92080600		MVI B,OOH	
920A CD160B*		CALL OUTPT	;(UTILITY SUBROUTINE IN THE KIT ;TO DISPLAY ACC CONTENT)
920D CD640A*		CALL RDKBD	;(UTILITY SUBROUTINE IN THE KIT ;TO ACCEPT ONE HEX DIGIT FROM THE ;KEYBOARD AND STORE IN THE ACC)
9210 OE04		MVI C,04H	
921207	A:	RLC	; SHIFTED TO SECOND(TENS) PLACE
9213 OD		DCR C	
9214 C21292		J NZ A	
9217325094		STA 9450H	
921A CD640A		CALL RDKBD	; (UTILITY SUBROUTINE IN THE KIT ;TO ACCEPT ONE HEX DIGIT FROM
921D 215094		LXI H,9450H	; the keyboard and store in ; THE ACC)
922086		ADD M	; COMBINE TWO KEYBOARD ENTRIES
922147		MOV B,A	
9222210093		LXI H,9300H	
9225 FE00		CPI 00 H	; (NAND IC)
9227 CA5E92		J Z TYPE1	
922A 211093		LXI H,9310H	
922D FE08		CPI 08H	; (AND IC)
922F CA5E92		J Z TYPE1	
9232212093		LXI H,9320H	
9235 FE32		CPI 32H	; (OR IC)
9237 CA5E92		JZ TYPE1	
923A 213093		LXI H,9330H	
923D FE86		CPI 86H	; (EXOR IC)
923F CA5E92		J Z TYPE1	
9242214093		LXI H,9340H	
9245 FE04		CPI 04H	; (NOT IC)
9247 CA7592		J Z TYPE2	
924A 215093		LXI H,9350H	
924D FE07		CPI 07H	; (BUFFER IC)
924F CA7592		JZ TYPE2	
9252216093		LXI H,9360H	
9255 FE02		CPI 02H	; (NOR IC)
9257 CA9092		J Z TYPE3	
925A 76		HLT ;IN SOM ; PROGRAM IS	085 KITS SUCH AS THAT FROM DYNALOG RMINATED WITH 'RST1'IN PLACE OF 'HLT'
; NAND, AND, OR, EXOR GATE CHECK			
925E OE00	TYPE1	: MVI C,OOH	; SET GATE INPUTS
926079	LP1:	MOV A,C	
9261 F604		ORI 04H	;SET GATE OUTPUT 1
926347		MOV B,A ;STO	GATE INPUTS FOR I/P \& O/P PINS IN REG B
9264 CDB192		CALL PROCES	
9267 OC		INR C	; NEXT INPUT COMBINATION
926879		MOV A,C	
9269 FE04		CPI 04H ; CH	IF ALL INPUT COMBINATIONS ARE OVER
926B C26092		J NZ LP1	
926E C3EB92		J MP GOOD	; OR J MP GOOD1
;BUFFER, INVERTER CHECK			
9275 OE00	TYPE2	: MVI C, 00 H	; SET GATE INPUT
927779		MOV A,C	
9278 F602		ORI 02H	; SET GATE OUTPUT 1
927A 47		MOV B,A	ORE GATE INPUT FOR I/P \& O/P PINS IN B
927B CDB192		CALL PROCES	

Fig. 2: Control word logic diagram for mode
tive locations for each IC, for every combination of inputs. If actual data read tallies with the stored data for all combinations of inputs, message 'GOOD' is displayed on the kit's display. If any of the result fails, i.e. if any of the gates is not working properly, message 'BAD' is displayed on the 8085 kit.

For convenience, the ICs having identical input/output pins and requiring identical input combinations, have been grouped under onetype. (7400, 7408, 7432, and 7486 have been grouped as Type 1', while 7404 and 7407 have been grouped as 'Type 2', and 7402 as 'Type 3'.)

When the software program (modified at EFY for working on Dynalog's Micro Friend-ILC-V2 kit) is executed on the 8085 kit, the display shows ' 1 CIC '. Now enter the last two digits of the IC number to be tested (the last but one followed by the last one, for instance, for IC 7404 enter 0 followed by 4). Please take care to place the IC in the ZIF socket with proper orientation and press 'Next'. Depending on performance of all the gates of 'IC under test', the message 'GOOD' or 'BAD' will appear on its display.

For addressing peripheral devices (8255, 8279), I/O mapped address scheme has been employed. At EFY, the addresses have been modified in accordance with the Dynalog kit used for the purpose. Other users would need to modify the program address space as well as input-output addresses for the peripherals suitably, in accordance with the specific kit used by them. Such opcodes which are inputoutput address dependent have been annotated with an asterisk mark. The al-

TABLE II: LOGIC STATES OF 8255 PORTS														
ZIF Socket Pin No.	8255 (A)							8255 (B)						
	6	5	4	3	2	1	$\begin{gathered} \text { HEX } \\ \text { Eq. } \\ \hline \end{gathered}$	13	12	11	10	9	8	$\begin{gathered} \text { HEX } \\ \text { Eq. } \end{gathered}$
Reg. C Ports	C5	C4	C3	C2	C1	C0		C5	C4	C3	C2	C1	CO	
Reg. A/B Ports	B2	B1	B0	A2	A1	A0		A0	A1	A2	B0	B1	B2	
IC Description	0	I_{2}	I_{1}	0	I_{2}	I_{1}		I_{1}	I_{2}	0	I_{1}	I_{2}	0	
	1	0	0	1	0	0	24	0	0	1	0	0	1	09
NAND (7400) (Type 1)	1	0	1	1	0	1	2D	1	0	1	1	0	1	2D
	1	1	0	1	1	0	36	0	1	1	0	1	1	1B
	0	1	1	0	1	1	1B	1	1	0	1	1	0	36
AND (7408) (Type 1)	0	0	0	0	0	0	00	0	0	0	0	0	0	00
	0	0	1	0	0	1	09	1	0	0	1	0	0	24
	0	1	0	0	1	0	12	0	1	0	0	1	0	12
	1	1	1	1	1	1	3 F	1	1	1	1	1	1	3 F
OR (7432) (Type 1)	0	0	0	0	0	0	00	0	0	0	0	0	0	00
	1	0	1	1	0	1	2D	1	0	1	1	0	1	2D
	1	1	0	1	1	0	36	0	1	1	0	1	1	1B
	1	1	1	1	1	1	3F	1	1	1	1	1	1	3 F
Ex-OR (7486) (Type 1)	0	0	0	0	0	0	00	0	0	0	0	0	0	00
	1	0	1	1	0	1	2D	1	0	1	1	0	1	2D
	1	1	0	1	1	0	36	0	1	1	0	1	1	1B
	0	1	1	0	1	1	1B	1	1	0	1	1	0	36
Invertor (7404) (Type 2)	0	1	0	1	0	1		1	0	1	0	1	0	
	1	0	1	0	1	0	2A	0	1	0	1	0	1	15
	0	1	0	1	0	1	15	1	0	1	0	1	0	2A
Buffer (7407)	0	0	0	0	0	0	00	0	0	0	0	0	0	00
(Type 2)	1	1	1	1	1	1	3 F	1	1	1	1	1	1	3 F
NOR (7402) (Type 3)	I_{2}	I_{1}	0	I_{2}	I_{1}	0		0	I_{2}	I_{1}	0	I_{2}	I_{1}	
	0	0	1	0	0	1	09	1	0	0	1	0	0	26
	0	1	0	0	1	0	12	0	1	0	0	1	0	12
	1	0	0	1	0	0	24	0	0	1	0	0	1	09
	1	1	0	1	1	0	36	0	1	1	0	1	1	1B

[^1]

Fig. 3: PCB layout for interface

Fig. 4: Component layout for PCB
ternate result-indi cating subroutines specifically used at EFY lab during testing are also included for benefit of the readers. The complete details of address space used for the program and peripheral devices are given before the actual program. The program is self-explanatory, with suitable comments added wherever required.

Although hardware interface circuit can be assembled easily on a general-purpose PCB, nevertheless an actual-size singlesided PCB pattern for the same is shown in Fig. 3 and its component layout is given in Fig. 4.

CIRCUIT IDEAS

LOW-COST PCO BILING METER

DHURJATI SINHA

The circuit presented here can be used in PCOs for displaying the actual bill. The overall cost of this circuit is less than Rs 200 while a commercial equipment serving similar pur-

pose may cost more than Rs 10,000 in the market. The comparative disadvantages of the presented circuit are as follows:

1. The calculator used along with this circuit is required to be switched 'on' manually before making a call.
2. Certain manual entries have to be made in the calculator; for example, for a pulse rate of Rs 1.26, number 1.26 is to be entered after switching 'on' the calculator followed by pressing of ' + ' button twice. However, possibility exists for automating these two functions by using additional circuitry.

In telephony, on-hook condition is represented by existance of 48 V to 52 V across the line. Similarly, the off-hook condition is represented by the line voltage dropping to a level of 8 V to 10 V (depending upon the length of the local lead line from telephone exchange to the subscriber's premi ses as well as upon the impedance of tel ephone instrument). Handset is normally lifted either for dialing or in response to a ring.

In the circuit shown in Fig. 1, when the handset is off-hook, the optocoupler MCT2E (IC1) conducts and forward biases transistor T1, which, in turn, forward biases transistor T2 and energises relay RL1. In energised condition of relay, the upper set of relay contacts connects the positive supply rail to PLL (phase-locked loop) IC2 (LM567) pin 4, while the lower set of relay contacts couples the positive telephone lead to input pin 3 of LM567 via capacitor C1 and resistor R3.

The negative telephone lead is permanently capacitively coupled via capacitor C2. As soon as call matures, 16 kHz tone pulses would be pumped into the telephone line by
the telephone exchange at suitable intervals. This interval depends on the pulse rate of the place called and also the time of the day and whether it's a working-day or holiday. On receipt of 16 kHz pulse, output pin 8 of IC LM567 (which is tuned for centre frequency of 16 kHz) goes 'low' for the duration of the pulse. The output of IC2 is coupled via transistor T3 to optocoupler IC3. The output of this optocoupler is used to bridge the ' $=$ ' button on a calculator (such as Taksun make), which has the effect of pressing the ' $=$ ' button of the calculator.

Considering that pulse rate for a specific town/time/day happens to be Rs 1.26 per pulse, then before maturity of the call one enters 1.26 followed by pressing of ' + ' key twice. Now, if a total of ten billing pulses have been received from exchange for the duration of the call, then on completion of the call, the calculator display would show 12.60. The telephone operator has to bill the customer Rs 14.60 (Rs 12.60 towards call charges plus Rs 2.00 towards service charges).

For tuning of the PLL circuit around IC2, lift the handset and inject 16kHz tone across the line input points. Tune IC2 to centre frequency of 16 kHz with the help of preset VR1. Proper tuning of the PLL will cause LED1 to glow even with a very low-amplitude 16 kHz tone.

EFY Lab note Arrangement used for simulating a 16 kHz pulsed tone is shown in Fig. 2. Push-to-on switch is used for generation of fixed-duration pulse for modulating and switching on a 16 kHz oscillator.

For more details regarding pulse rates, pulse codes, etc, readers are advised to go through the tariff rates and pulse code information given in the beginning pages of telephone directories, such as MTNL, Delhi directory, Vol. I. One may also dial 183 for getting more details.

AUTOMATIC MUTING CIRCUIT FOR AUDIO SYSTEMS
 SUNISH P.

Fig. 1 shows a muting circuit, which makes use of IC LB1403. Signal from any pre amplifier, such as HA1032, LA3161, or LA3160, is connected to the base of amplifier transistor T1. Variable resistor VR1 is used to control the gain of input signal.

Comparator 2 output at pin 2 of LB1403 is used for generation of muting signal at the emitter (point A) of transistor T2, which can be directly connected to muting pin 4 of amplifier employing IC LA4440. As long as the audio input to the circuit of Fig. 1 is below a certain level (say,

150 mV peak to peak), the output at point A will be high (the value measured at EFY Lab was around 4.5 V). Once the input crosses this threshold level, the output will be around 0 V . Capacitor C4 de-

termines the 'on'/'off' muting delay.
Higher the value of this capacitor,

greater will be the muting delay period.
Slight circuit modification will be needed if this circuit is used with STK series amplifiers, such as STK 4141, 4142, 4152, and 4191, because they need nega-
tive pol arity voltage for muting. The additional circuit to be connected at point A in that case is shown in Fig. 2.

2-LINE INTERCOM-CUM-TELEPHONE LINE CHANGEOVER CIRCUIT :

J. SRINIVASAN

The circuit presented here can be used for connecting two telephones in parallel and also as a 2 -line intercom.

Usually a single telephone is connetted to a telephone line. If another telephone is required at some distance, a parallel line is taken for connecting the other telephone. In this simple parallel line operation, the main problem is loss of privacy besides interference from the other
phone. This problem is obviated in the circuit presented here.

Under normal condition, two telephones (telephone 1 and 2) can be used as intercom while telephone 3 is connected to the lines from exchange. In changeover mode, exchange line is disconnected from telephone 3 and gets connected to telephone 2.

For operation in intercom mode, one has to just lift the handset of phone 1
and then press switch S1. As a result, buzzer PZ2 sounds. Simultaneously, the side tone is heard in the speaker of handset of phone 1 . The person at phone 2 could then lift the handset and start conversation. Similar procedure is to be followed for initiation of the conversation from phone 2 using switch S2. In this mode of operation, a 3-pole, 2-way slideswitch S 3 is to be used as shown in the figure.

In the changeover mode of operation, switch S3 is used to changeover the telephone line for use by telephone 2. The switch is normally in the intercom mode and telephone 3 is connected to the exchange line. Before changing over the ex-
changelinetotelephone 2 , the person at telephone 1 may inform the person at telephone 2 (in the intercom mode) that he is going to changeover the line for use by him (the person at telephone 2). As soon as changeover switch S3 is flipped to the other position, 12 V supply is cut off and telephones 1 and 3 do not get any voltage or ring via the ring-tone-sensing unit.

Once switch S3 is flipped over for use of

exchange line by the person at telephone 2 , and the same (switch S3) is not flipped back to normal position after a telephone call is over, the next telephone call via
exchange lines will go to telephone 2 only and the ring-tone-sensing circuit will still work. This enables the person at phone 3 to know that a call has gone through. If
the handset of telephone 3 is lifted, it is found to be dead. To make telephone 3 again active, switch S 3 should be changed over to its normal position.

GUARD FOR REFRIGERATORS AND AIR-CONDITIONERS

THOMAS SEBASTIAN

Amyriad of circuits have appeared in EFY for protection of refrigerators and air-conditioners against voltage fluctuations and brownouts. Here is a useful and economic cir-
cuit blending three features, namely, un-der-/over-voltage protection, switch 'on' delay, and regulation.

The circuit with commonly available components is a combination of familiar
building blocks. The ladder resistancetrimpot configuration in conjunction with modified bridge comparator ensures reliable sequential operations of boosting, low-voltage cut-in, bucking, and high-voltage cut-off.

When the input line voltage is above 140V, relay RL2 energises and the boosted voltage appears at the N/O contact RL1(b) of relay RL1. However, relay RL1 remains de-energised under two conditions: first, if the input is below 170 V threshold voltage (being controlled by trimpot VR1), and second, due to the initial shunting effect of capacitor C6 at the base junction of

transistor T2. The transistor T2 will be enabled only when the charging capacitor raises its base potential to overcome the reverse bias voltage at its emitter. Thus, capacitor C6 and resistor R6 determine the duration of the on-delay, which is approximately three minutes for the given values.

As soon as relay RL1 energises due to the switching action of transistor T2, the boosted voltage appears at the output. The adjustment of trimpot VR2 controls the
bucking point. The output is isolated when the input reaches prohibitive voltage (say 270V), over-voltage sensing being controlled by trimpot VR3 to saturate transistor T4, which, in turn, cuts off relay RL1 via transistors T5 and T6. As a consequence, no output is available from the auto-transformer.

The resistor R8 discharges the timing capacitor C6 when RL1 energises. This is done to ensure that when capacitor C6 is connected back to the base junc-
tion of transistor T2, on resumption after a power failure or an over-voltage condition, repeatability of on-delay is taken care of.

By selecting the current rating of relay contacts (5A or 30A) and auto-transformer (500 VA or 4000 VA), the circuit can be adapted suitably for a refrigerator or air-conditioner to obtain a regulation of 200 V to 240 V for an input variation of 170 V to 270 V .

RADIO-BAND-POSIIION DISPLAY

M.K. CHANDRA MOULEESWARAN

This circuit is an add-on unit for radio receivers that lack band-position display. The circuit presented here can show up to nine bands. It also incorporates a novel feature to make the display dance (blink) with the audio level from the receiver. The power-supply for the circuit can also be derived from the radioset.

The conversion of selected channel to BCD format is achieved using diodes D1 through D15 in conjunction with resistors R4 to R7. The voltages developed across these resistors (R4 through R7) serve as logic inputs to BCD inputs of BCD to 7-segment decoder IC1 (CD4511). When all switches are in 'off' state, the voltage across resistors R4 through R7 is logic
 zero, but when any of the switches S1 through S 9 is slided to 'on' position, the output across these resistors changes to output proper BCD code to represent the selected channel. This BCD code is converted to 7 -segment display by IC1. By
this arrangement of diodes, the need for another decimal-to-BCD converter IC and associated parts is obviated. Switches S1 through S 9 are actually parts of existing
band-switch of the radio. Usually, one or two changeover contacts would be found extra in the modular pushbutton-type band-switches of the radios.

IC1's display blanking pin 4 is connected to a display-blinker-control circuit
trolled by the pulsating voltage developed from audio output of radio.

The power-supply regulator stage is needed only when radio power-supply is greater than 6V DC.
wired around transistors T1 and T2. A small part of the audio signal from the speaker terminals is applied to rectifier diode D16 and filter capacitor C1 to produce a pulsating DC across preset VR1. The sliding contact of preset VR1 is connected to the base of emitter-follower stage comprising transistor T2. The output of transistor T2, as amplified by transistor T1, is connected to pin 4 of IC1. Thus turning 'on'//off' of display is con-

September

DISPLAY SCHEMES FOR INDIAN LANGUAGES-PART II

 [HARDWARE AND SOFTWARE]K. PADMANABHAN, S. ANANTHI, K. CHANDRASEKHARAN, AND P. SWAMINATHAN

The 6845 is a programmable CRT controller, which can be programmed so as to generate a raster with the desired number of horizontal and vertical raster lines [refer Fig. 1(b)]. For detailed explanation of its programming method for an application using 6845 CRTC, you can refer chapter 16 of the book 'Learn to Use Microprocessors' published by EFY.

There are two registers in the 6845, which are selected with the help of ad-
dress line A0. When A0 and CS3 are low (selected), the program code accesses the first register. If A0 is high and CS3 is low, the second of the two registers is accessed. In addition, the 6845 has 16 internal registers. The selection of the internal registers for writing is done via the first register while the second register is written with the data to be transferred into the selected register.

Here, we need 16 lines for a character slot. The width of each character slot is

Fig. 4: Video RAM storage flowchart only 8 , because that is what the shift register can handle. But our multilingual characters themselves are written in a font of size 12×16. Therefore the characters classification for the 6845 does not really mean the actual characters shown, because we have to use one-and-ahalf character slots for each of the multilingual character.

This was the problem faced earlier while attempting use
of CRT controller chip (6845). Therefore the authors went in to design a separate CRT controller circuit using discrete CMOS ICs, which was successfully tested. Later, at the behest of EFY (proposing use of dedicated chips to make it a standalone compact project), the authors developed the present modified circuit using the 6845 CRT controller itself.

Once programmed, the 6845 CRTC generates the vertical and horizontal sync signals for the raster at pins 39 and 40 , respectively. The 6845 al so provides MA0MA13 signals for addressing the video memory. The video memory is used here to store the dot patterns for the data displayed on the TV screen. The video memory address lines and raster address lines have been used as under:

MA0-MA5 (6 lines) .. To choose one of 64 character slots in every character row.

RA0-RA3 (4 lines) .. To select one among the 16 lines on each such row.

MA6-MA9 (4 lines) .. To select one of the 16 character rows on screen.

During each character row, the 16 row lines are selected using RAO-RA3 signals, which are sequentially incremented from 0 to 15. This mode of wiring the CRT controller to the video memory is not the usual one. It is unlike the one referred to in chapter 16 of 'Learn to Use Microprocessors' book mentioned earlier. There, the MA0, MA1, . .lines address the video RAM, but the video RAM data goes to the character generator. The character generator gets the RAO-RA3, to let it know which line of the character the data is to be output at any instant-because there are many lines of dots for each character. Here the character generator is not used, but the video RAM directly stores the dot points of the display text. They are written by the program into the video RAM. HereRA0-RA3 are the four line-count signals L1 to L4 for the 16 lines, which are the heights of each Indian language character (here it includes English as well).

The four row-count signals MA6-MA9 are used here for generating 16 rows of text per screen. At the end of the 64th character byte (representing 43rd character) display, the display enable signal is blanked. This is to cater to the horizontal flyback period. The sync signal for the video output is obtained by combining the H -sync and V-sync outputs from pins 39 and 40 of CRTC via two resistors (of 10k

Fig. 5: Actual-size, component-side track layout for the schematic diagram of Fig. 1
each) and then coupling it to the base of transistor BC148B to invert the sync signals at its collector.

The video signal is the dot pattern
obtained from the shift register IC 74LS165. This register is loaded at each character-clock beginning. The shifting is accomplished by the dot clock. Pin 7 of IC

74LS165 outputs the dot pattern. This is combined with the sync signal at the collector of transistor BC148B using a diode and a series resistor. Composite video output is available for connection to the TV monitor from the collector of transistor BC148B.

Video RAM. The 62256 is a $32 \mathrm{k} \times 8$ bit static RAM; but only 16k address space has been used here, which makes for a raster of 512×256 pixels, or 128 k pixels, or $128 / 8=16 \mathrm{kB}$. The RAM 62256 has A0-A13 address lines for its 16k capacity. The MA0-MA5, the character-count outputs, are given to its first six address pins A0-A5. Either the 8085 or these charac-ter-count signals can select these loworder video memory addresses. A set of quad 2-line to 1 -line data selector ICs 7 and 8 (74157) is used under control of CS1 (not CS1) to switch between them. Normally, the MAO-MA5 lines have access so as to continuously display the video memory contents, but when the 8085 writes fresh data, it switches to A0-A5.

Memory access of the video RAM is done on the basis of a high-order address and a low-order address. The eight highorder address values are written into 74LS373 latch (IC21) by the 8085 using CS2. The output enable of this latch is under control of $\overline{\mathrm{CS} 1}$, so that the data previously written into this latch can be accessed when $\overline{\mathrm{CS1}}$ is enabled (active low). The latched outputs of IC21 are for selecting the A6 to A13 pins of the video memory.

By this scheme of low-order and highorder addressing, the memory group of 16k of video RAM is conveniently accessed by just $2 k$ space of the 8085's memory area. Further, it also facilitates software writing. The high address data is that of the row and line-select information. These are decided by the software based on what row of character and which line of that row is to be filled from the character code EPROM, as a specific key is depressed. The character slot information in any row is then written by a memory write into the low-order address of the RAM.

By using 74LS373, the data into the latch is written with its output in tri-state condition (pin 1 high). When pin 1 of 74LS373 is enabled (low), the RAM chip is written with the character slot data by the 8085 into its low-order address. Normally, the lines RAO-RA3 and MA6-MA9

Fig. 6: Actual-size, solder-side track layout
are extended by buffer IC 74LS244 to the RAM high address lines if CS1 is low. If CS1 goes high, the buffer is tri-stated at its output, allowing the latch (74LS373)
data to reach the address lines A6-A13 of the video RAM chip. In this way, the video RAM is addressable by both the CRTC 6845 circuitry as well as the 8085 , when
a new key is typed.
The data bus lines are likewise connected by a 74LS245 bidirectional buffer. The pixel data for the typed-in character must be written into the video RAM, after reading the table of dots stored in thecharacter code EPROM and writing the same intothevideo RAM. Thetable of data (dots) for each language occupies a 2 k memory area, and hence four languages can be selected by address lines A11 and A12 of the character generator EPROM. For each character currently being entered, the set of pixels are read byte-by-byte, stored as nibbles temporarily in buffer memory by the program, and then output into the video RAM nibble-by-nibble.

If desired, four languages may be typed on the same row using function keys F1-F4 under software control. The selected language is indicated by two of the LEDs (LED1 and LED2) at the output of 7475. The same outputs are also wired to the A11 and A12 address lines of the character EPROM. You may press F1 and start typing in English, then press F2 and start typing in Hindi, and so on.

The 74165 video shift register (commonly used with all CRT display-based circuits) is used to shift the dot signals loaded in parallel (8 bits) from the memory into a serial form to get the actual video line signal.

In Fig. 1(b), the dot clock is generated using a 74132 gate (N15) in conjunction with a capacitor-resistor combination of R23 (and preset VR1) and C2 to function as an oscillator. The frequency is about 10 MHz , which is divided by 8 in 74190 divider/counter. This gives the characterslot clock. The load command to the shift register is obtained from pin 11/13 (shorted) of the 74190 IC which goes to pin 2 of IC 74LS165. The 2764 EPROM is filled with control program at its highest address range of $2 k$ (i.e. 1800-1FFF), because its pins A11 and A12 are pulled high.

Basic principles

The basic principles of Indian language display software are summarised below while a flowchart for storage of pixel data in the video RAM is given in Fig. 4.

1. Multiple language fonts are stored in an 8k or bigger memory space, if necessary. EPROM occupies $2 k$ locations for each font of a language. Thus, four language fonts can be stored using 8 k

Fig. 7: Component layout for PCB

EPROM.

2. Since 12 horizontal dots per character are insufficient for an Indian Ianguage, a 12×12 matrix is chosen, though

English appears as an expanded font. The hook characters in Hindi like ' Hu ' and 'hoo' need one more dot-the 13th dotvertically. The hook characters are non-
space-moving characters in the standard typewriters of the Indian languages. Particularly in Hindi, there are multiple hooks, such as in 'hoom'. In the typewriter, the hook characters do not advance (move space) after they are typed. The program checks the code, and if it is a hook code, it does not write immediately the dots corresponding to that hook into the video memory, but waits for the succeeding keyboard stroke(s) for a non-hook character to follow before shifting the cursor. Thereupon, the program combines the dot pattern of the hook characters with that of the following main character, and then places the net dot pattern into the video memory.
3. Since memory contains only 8 bits per location, one-and-a-half memory locations are assigned for each character shown on screen, thus providing 12 dots per horizontal row in TV format. (This is more like the computer format.) In this way, even characters start at a memory byte and extend up to the next byte (its higher order nibble). Odd numbered characters start at the right nibble (lower order nibble) of a byte and extend to the next complete byte (refer Fig. 4). With 64 bytes on each horizontal row, up to 43 characters can be shown per row. The hardware caters to a 64×16 character display comprising 512×256 pixels.

The control software in the 8085 board for the entire unit does the job of reading the keyboard, sel ecting the language, writing the key code into video RAM, and doing minor editing as well.

A double-sided PTH PCB is required for assembling the circuit. The actual-size component-side and solder-side track layouts for the PCB are shown in Figs 5 and 6 , respectively. Fig. 7 shows the component layout.

Testing the hoard

The board may be tested by a sequence of small programs written into the control EEROM. Verifications are done as per the guidelines given below:

1. The first thing to test is whether the data bus and address lines are functional and the output port 80 H is also functional. Here is a simple program for the same:

MVI A,55H
OUT 80H
HLT

This can be written into an EEROM (using any 8085 kit or the one published in Nov. ' 99 issue of EFY) and is fixed into the board, and then the LEDs on the left bottom of the board wired at the 7475 (IC9) outputs would indicate the No. 5 as they glow.

If this is not observed, one has to check for proper connections from the data lines to the 7475, connections to the 74156 address decoder, and the gate signals to pins 4.13 of the 7475 as per Fig. 1.

Further, the connections to the video RAM 62256 through the buffer IC 74244 and 74157 (pair of ICs 17 and 18) should be checked for their correctness. When the CPU 8085 is writing to the video RAM, the 74157 (pair) connects A0-A5 address lines of the 8085 to those of the video RAM. Then, pin 1 of the 74157 ICs should be pulsing low.

Thus, the following program to write to 1800 H in a loop would check for pulse at pin 1 of 74157 and a high pulse at pins 1 and 19 of 74244 . When the IC 74244 is passing the 6845 signals, the IC 74373 is in tri-state condition because its pin 1 is then high.

P: MVI A,55
STA 1800 H
LDA 1800H
OUT 80H
HLT
Or, in place of HLT, a loop may be executed as under:

JMP P
The above short programs will enable the checks to be made.
2. Another program to initialise the 6845 as per the routine given in the listing is to be entered in the EEROM and then tested for proper H sync and V sync signals from pins 39 and 40 of 6845.
3. The video clock signals and the video output should be checked for proper random display raster.
4. Another program for checking ERASE memory should be entered into the EEROM and then tested for the erasure of clear screen of the raster.
5. The keyboard program should be tested as per the KBD routine.

Only after successful testing of the board as per above-mentioned guidelines, the full program as per the listing given in Appendix 1 should be programmed into control EPROM at its highest $2 k$ address range (1800-1FFF) and
fixed on the board.

Conclusion

The two designs, the first one based on a simple PC and the second one based on dedicated hardware/software using computer keyboard, for display of I ndian language text on a monitor and TV screen respectively are illustrative of the techniques of video display and software programming for Indian languages. The former is useful in an industrial or office environment, while the latter can be used in public display systems.

The main intention of this article is not merely to show the design of either the dedicated display unit or the program on PC for typing multilingual text, but to demonstrate the coding scheme for Indian languages with just 128 8-bit codes instead of the currently talked about 16-bit codes. Further, the coding scheme suggested here does not disturb existing typists of the 11 Indian languages, for which typewriters already exist.

The memory saving is a vital factor when one uses such codes for the Indian languages like English. Presently, all such Indian text is treated on a computer or on the Internet as graphic patterns only and consumes large memory space. If $1 k$ of memory is taken for one page of screen with coding like this, it would take 8 k in an ordinary graphics mode. When archives of text are to be kept in databases, the ASCII-like coding is the best.

With program PIXEL.bas or with the dedicated display unit using IBM PCcompatible keyboard, one can type in three languages using the ASCII-like codes.

Note: The following softwares pertaining to this project, which could not be issued with September EFY-CD due to unavoidable circumstances, will now be included in October EFY-CD:

1. Pixel6.BAS
2. Pixel6.EXE
3. Chtamil2
(The above files pertain to computer based display scheme).
4. Tam.LST
5. Tam.EPR
6. Chtamil3
(The files at sl. no. 4 and 5 pertain to control program and its hex dump for control EPROM while file at sl. no. 6 contains hex code for character generator EPROM.

Errata for Part I of the article

1. Refer Fig. 1(a). Please renumber data pins 9 through 11 and 13 through 17 of
both 2764 ICs (IC3 and IC4) as 11 through 13 and 15 through 19.
2. Refer Fig. 1(b). Interchange connections between pin numbers 1 and 2 of

74LS165 (IC22) (i.e. pin 11/13 of IC23 to go to pin 2 while pin 14 of IC23 to go to pin 1 of IC22).

[Apyendix I]

GONTIROL PROGRAW ISTING

Addr. 0000	Code	Label	Mneumonics . ORG 0000 H	Remarks	00F6	1600		MVI D,00	of "\$"
	2611		LINE NUMB: EQU	1126H	00F 8	210011		LXI H,NIBLE BU	;BUFFER MEMORY STORING
	2811		ROW_NUMB: EQU	1128 H					NIBBLE BY NIBBLE
	2911		CHAR NUMB: EQ	1129H	00FB	OA	B2:	LDAX B	;Get pixel code, one byte
	2511		NIB FFL: EQU 112		00FC	5F		MOV E,A	;move into E
	0011		BUFFER MEM: E	QU 1100H	OOFD	$1 F$		RAR	;Get first nibble of four dots
	0011		NIBLE BŪF: EQU	1100 H	OOFE	$1 F$		RAR	
	2911		CHAR NO: EQU	1129H	00FF	$1 F$		RAR	
	5011		AUX S̄TORE: EQU	1150 H	0100	$1 F$		RAR	
	2711		CHAR POS: EQU	1127H	0101	E6 OF		ANI OFH	
	0500		F1KEY: EQU 05H		0103	77		MOV M,A	;store first nibble, left
	D6 00		F2KEY:EQU D6		0104	23		INX H	;to store at next address
	0400		F3KEY:EQU 04		0105	14		INR D	;increment counter
	DC 00		F4KEY:EQU DC		0106	7 B		MOV A,E	;mov a,e
0000	31 FF 13		LXI SP,13FFH		0107	E6 OF		ANI OFH	;NEXT FOUR DOTS
0003	F3		DI		0109	77		MOV M,A	;Store it in buffer
0004	C3 8000		J MP 0080H		010A	23		INX H	
0080			.ORG 80H		010B	14		INR D	
0080	CD E6 04		CALL CRTCON_I	IT ; ;nitialise c.r.t.c.	010C	7A		MOV A,D	;check if all (12 lines x 3nibles $=36$)
0083	CD OB 05		CALL CLEAR	;clear video memory	010D	FE 24		CPI 24H	;compare if all 36 nibbles for \$ saved
0086	3E 00		MVI A,00		010F	CA 1601		JZEN	
0088	D3 80		OUT 80H		0112	03		INX B	
008A	CD 1204		CALL KBD	;CALL KEYBOARD	0113	C3FB 00		JMP B2	
008D	4 F	BEG:	MOV C,A		0116	E1	EN:	POP H	
008E	DB 80		IN 80H		0117	D1		POP D	
0090	E6 03		ANI 03H		0118	C1		POP B	
0092	FE 01		CPI 01		0119	C9		RET	;Data storage in 100-1123 buffer
0094	CA CA 00		J Z HINDI						memory over
0097	FE 00		CPI 0		;VIDE	RAM STOR	ROUTINE		
0099	CA A9 00		J Z ENGLISH		;ROW	NO.AND CH	RACTER N	UMBER AT ENTRY,	STORED IN 1128 AND 1127
009C	FE 02		CPI 02H		011A	3A 2711	VDUST:	LDA CHAR_POS	;CHARACTER POSITION ON
009E	CA BE 00		J Z TAMIL						SCREEN
00A1	FE 03	FL:	CPI 03H		011D	CD 8A 01		CALL CH_NUMB	;CALCULATES CHAR. SLOT FROM
00A3	CA A6 00		J Z LANG3						CHAR.NO.
00A6	C3 8D 00	LANG3:	J MP BEG	;YET UNDEFINED.	0120	5 F		MOV E,A	
00A9	79	ENGLISH:	MOV A,C		0121	1614		MVI D,14H	
00AA	CD 9801	E:	CALL CL_CH_CK	;CONTROL CHARACTER CHECK	0123	3E FF		MVI A,FFH	
00AD	D2 B600		J NC CURS̄ORA		0125	322611		STA LINE NUMB	;LINE NO. STORED IN 1126
00B0	CD E5 00		CALL NIBST	;NIBBLE STORE	0128	210011		LXI H,BUFFER M	M ;POINT TO BUFFER MEMORY
00B3	CD 1A 01		CALL VDUST	;VdU STORE MEANS WRITE VdRAM	012B	3A 2611	NXTLIN:	LDA LINE_NUM̄B	
00B6	CD 2202	CURSORA:	: CALL INC_SP	;CURSOR NEXT	012E	3C		INR A	
00B9	C3 8D 00		JMP BEG ${ }^{-}$		012F	322611		STA LINE NUMB	;lines 0-11 decimal
00BC	00		NOP		0132	3A 2811		LDA ROW_NUMB	;rows 0-15 decimal
OOBD	00		NOP		0135	17		RAL	
OOBE	79	TAMIL:	MOV A, C		0136	17		RAL	
00BF	CD B4 02		CALL CHOOKT	;COMPARE HOOK CHARACTERS IN	0137	17		RAL	
				TAMIL	0138	17		RAL	
$00 C 2$	DA D4 00		JC TAMHKFIL	;TAMIL HOOK FILLING	0139	E6F0		ANI FOH	
00C5	C3 AA 00		JMP E		013 B	47		MOV B,A	
$00 \mathrm{C8}$	00		NOP		013C	3A 2611		LDA LINE_NUMB	
$00 C 9$	00		NOP		013F	B0		ORA B	;GET HIGH ADDRESS
OOCA	79	HINDI:	MOV A, C		0140	320018		STA 1800H	;STORE IN VIDEO LATCH 74374
00CB	CD D2 02		CALL HIHOCK	;COMPARE HOOK CHARACTER HINDI	0143 0146	$3 A 2611$ FE $0 C$		LDA LINE_NUMB CPI OCH	;CHECK FOR > 12 LINES
OOCE	DA DA 00		JC HINHK	;HINDI HOOK FILLING ROUTINE	0148	C2 4C 01		J NZ STORE	
00D1	C3 AA 00		J MP E		014B	C9		RET	
00D4	CD 1303	TAMHKFIL	: CALL HIHKFIL	;CALL HOOK CHARACTER FILL	014C	3A 2511	STORE:	LDA NIB_FL	;1125 H IS USED FOR STORING
00D7	C3 B6 00		J MP CURSORA						ODD/EVEN CHAR. IN DO BIT
00DA	F5	HINHK:	PUSH PSW		014F	1 F		RAR	
00DB	CD 8A 03		CALL ROW13FIL	;CALL 13TH ROW FILL	0150	DA 7301		J C LOAD_RT	;RIGHT HALF IS TO BE LOADED
OODE	F1		POP PSW		0153	7 E	LEFT:	MOV A, M ${ }^{-1}$;TAKE BYTE (NIBBLE BUFFER)
00DF	CD 4803		CALL HI HO CH	; CALL HINDI HOOK FILL	0154	17		RAL	
OOE 2	C3 B6 00		J MP CUR̄SOR̄A		0155	17		RAL	
;NIBBL	E STORE R	UTINE (ASC	Cl CODE IN ACC.fo	or current character say \$)	0156	17		RAL	
00E5	C5	NIBST:	PUSH B		0157	17		RAL	
O0E6	D5		PUSH D		0158	E6F0		ANI FOH	;move nibble left
OOE 7	E5		PUSH H		015A	47		MOV B,A	;save in B
OOE 8	5 F		MOV E,A		015B	23		INX H	;point to next nibble buffer
O0E9	1608		MVI D,8	;Start address of char.gen ROM	015C	7 E		MOV A,M	
OOEB	1A		LDAX D	;GET LOW ADDRES OF CHARACTER TABLE	015D 015 E	B0 12		ORA B STAX D	;join with left nibble :store in video ram
OOEC	4 F		MOV C,A		015F	13		INX D	
OOED	3E 80		MVI A,80H	;ADD 80H TO A	0160	23		INX H	;get address of next char.slot
OOEF	83		ADD E		0161	7E		MOV A,M	;Read from buffer
00F0	5 F		MOV E,A		0162	07		RLC	;Move left
OOF 1	1A		LDAX D	;Get high address of cha. table	0163	07		RLC	
00F2	C6 08		ADI 8		0164	07		RLC	
00F4	47		MOV B,A		0165	07		RLC	
00F5	OA		LDAX B	;b-c contain start address of char.table	0166	E6F0		ANI FOH	

0294	DA A5 02	JC RIG_NIB	;if flag set go to start writing from right nible	$\begin{aligned} & 0336 \\ & 0337 \end{aligned}$	$\begin{aligned} & 2 \mathrm{~F} \\ & \mathrm{BO} \end{aligned}$		$\begin{aligned} & \text { CMA } \\ & \text { ORA B } \end{aligned}$;OR with 'hook' dots
[LEFT NIBBLE ROUTINE		TINE		0338	2F		CMA	
0297	3E FF	LEFT_NIB:MVI A,FFH		0339	77		MOV M,A	
0299	13	- INXD		033A	23		INX H	
029A	1A	LDAX D		033B	13		INX D	
029B	E6 OF	ANI OFH		033C	7D		MOV A,L	
029D	06 F 0	MVI B,FOH		033D	FE 24		CPI 24H	;36 nibbles
029F	B0	ORA B		033F	C2 3203		J NZ PB	
02A0	12	STAX D		0342	CD 1A 01		CALL VDUST	;store it
02A1	1B	DCX D		0345	37		STC	
02A2	C3 6F 02	J MP NXTL		0346	3 F		CMC	;clear carry flag
;RIGHT	NIBBLE			0347	C9		RET	
02A5	1A	RIG_NIB: LDAX D		;HIND	HOOK CHA	R. FILL (MU	LTIPLE HOOKS)	
02A6	E6 F0	ANI FOH		0348	CD E5 00	HI HO_		
02A8	060 F	MVI B,OFH				CHFI: ${ }^{-}$	CALL NIBST	
02AA	B0	ORA B		034B	210011	PQ1:	LXI H,1100H	
02 AB	12	STAX D		034E	115011		LXI D,1150H	
02AC	13	INX D		0351	7 E	PP1:	MOV A,M	
O2AD	3E FF	MVI A,FFH		0352	12		STAX D	
02AF	12	STAX D		0353	13		INX D	
02B0	1B	DCX D		0354	23		INX H	
02B1	C3 6F 02	J MP NXTL		0355	7D		MOV A,L	
;COMP	ARE HOOK	CHARACTER (TAMIL)		0356	FE 24		CPI 24H	
02B4	FE 50	CHOOKT: CPI 50H	;HOOK CHARACTER()	0358	C2 5103		J NZ PP1	
02B6	CA D0 02	J Z NM	; UMP- NON-MOVING CHARC.	035B	CD 1204		CALL KBD	
02B9	FE 70	CPI 70H	;HOOK CHAR ()	035E	F5		PUSH PSW	
02BB	CA D0 02	J Z NM		035 F	CD E5 00		CALL NIBST	
O2BE	FE 5B	CPI 5BH		0362	210011		LXI H,1100H	
O2CO	CA D0 02	J Z NM		0365	115011		LXI D,1150H	
02 C 3	FE 7B	CPI 7BH		0368	7 E	PP2:	MOV A,M	
02C5	CA D0 02	J Z NM		0369	2 F		CMA	
$02 \mathrm{C8}$	FE 2B	CPI 2BH		036A	47		MOV B,A	
02CA	CA D0 02	J Z NM		036B	1A		LDAX D	
O2CD	37	STC		036C	2 F		CMA	
O2CE	3F	CMC		036D	B0		ORA B	;OR WITH HOOK DATA
02CF	C9	RET		036E	2 F		CMA	;OF PREVIOUS KEY
02D0	37	NM: STC	;CARRY SET FOR HOOK CHARACTER	$\begin{aligned} & 036 \mathrm{~F} \\ & 0370 \end{aligned}$	$\begin{aligned} & 77 \\ & 23 \end{aligned}$		MOV M,A INX H	
02D1	C9	RET		0371	13		INX D	
;COMP	ARE HOOK	CHARACTER FOR HINDI		0372	7 D		MOV A,L	
02D2	FE 2D	HIHOCK: CPI 2DH		0373	FE 24		CPI 24H	
02D4	CA 1103	J Z NH		0375	C2 6803		J NZ PP2	
$02 \mathrm{D7}$	FE 3D	CPI 3DH		0378	F1		POP PSW	
02D9	CA 1103	J Z NH		0379	CD D2 02		CALL HIHOCK	;Hindi hook character check
02DC	FE 51	CPI 51H		037C	F5		PUSH PSW	
02DE	CA 1103	J Z NH		037D	CD 8A 03		CALL ROW13FIL	;For some characters 13th line has a
02E1	FE 71	CPI 71H						few dots
02E3	CA 1103	J Z NH		0380	F1		POP PSW	
O2E6	FE 41	CPI 41H		0381	DA 4B 03		JC PQ1	
O2E8	CA 1103	J Z NH		0384	CD 1A 01		CALL VDUST	
02EB	FE 53	CPI 53H		0387	37		STC	
O2ED	CA 1103	J Z NH		0388	3F		CMC	
02F0	FE 57	CPI 57H		0389	C9		RET	
02F2	CA 1103	J Z NH		;13th L	INE FILLING	FOR SOME	HINDI HOOKS	
02F5	FE 77	CPI 77H		038A	F5	ROW13FIL	:PUSH PSW	
02F7	CA 1103	J Z NH		0388	FE 71		CPI 71H	;HOOK CODE
02FA	FE 5A	CPI 5AH		038D	CA 9C 03		J Z HOOKU	
02FC	CA 1103	J Z NH		0390	FE 77		CPI 77H	
02FF	FE 61	CPI 61H		0392	CA AA 03		J Z HOOKV	
0301	CA 1103	J Z NH		0395	FE 2D		CPI 2DH	
0304	FE 73	CPI 73H		0397	CA B8 03		JZ HOOKW	
0306	CA 1103	J Z NH		039A	F1		POP PSW	
0309	FE 7A	CPI 7AH		039B	C9		RET	
030B	CA 1103	J Z NH		039C	210011	HOOKU:	LXI H,1100H	;Fill hook data at 1100-01
030E	37	STC	;NON-HOOK CHAR.	039 F	3 EEO		MVI A,EOH	;Hook dot for 13th line
030F	3F	CMC	;CLEARS CARRY FLAG	03A1	77		MOV M, A	
0310	C9	RET		03A2	23		INX H	
0311	37	NH: STC	;SETS CARRY FLAG FOR	03A3	3E 7F		MVI A, 7 FH	
0312	C9	RET	; HOOK CHARACTER	03A5	77		MOV M,A	
;HOOK	CHARACTE	FILL ROUTINE(OTHER	HINDI)	03A6	2 B		DCX H	
0313	CD E5 00	HIHKFIL: CALL NIBST	;store nibbles of chra. code in	03A7	C3 C6 03		J MP K	
			;1100h-1124h	03AA	210011	HOOKV:	LXI H,1100H	
0316	215011	QA: LXI H,1150H		03AD	3 EFF		MVI A,FFH	;FFEF, one dot
0319	115011	LXI D,1150H	;Aux. store	03AF	77		MOV M, A	;for "Hoo"- hook
031 C	7E	PA: MOV A,M	;store all data in aux. store	03B0	23		INX H	
031 D	12	STAX D		$03 \mathrm{B1} 1$	3 EFF		MVI A,EFH	
031 E	23	INX H		03 B 3	77		MOV M,A	
031F	13	INX D		03B4	2B		DCX H	
0320	7D	MOV A,L		03 B 5	C3 C6 03		JMP K	
0321	FE 24	CPI 24H		03 B 8	210011	HOOKW:	LXI H,1100H	
0323	C2 1C 03	J NZ PA		03BB	3 EFC		MVI A,FCH	;FCFF, two dots
0326	CD 1204	CALL KBD		03BD	77		MOV M, A	
0329	CD E5 00	CALL NIBST	;get pixel data in 1100h - 1124h	03BE	23		INX H	
032C	210011	LXI H,1100H		03BF	3 EFF		MVI A,FFH	
032F	115011	LXI D,1150H		03 Cl	77		MOV M,A	
0332	7E	PB: MOV A,M		03 C 2	2B		DCXH	
0333	2 F	CMA	;compliment it as data	03 C 3	C3 C6 03		J MP K	
0334	47	MOV B,A	;were entered like that	03 C 6	CD CA 03	K:	CALL THIRL	;call thirteenth line fill
0335	1A	LDAX D		03C9	F1		POP PSW	

CONSTRUCTION

04F1	77	MOV M,A	0750	FF FF 2C FF	.DB FFH, FFH, 2CH, FFH, 5BH,2BH,FFH,FFH, FFH,
04F2	04	INR B			FFH,0DH,5DH, FFH, 21H,FFH,FFH
04F3	13	INX D	0754	5B 2B FF FF	
04F4	78	MOV A,B	0758	FF FF OD 5D	
04F5	FE 10	CPI 10H	075C	FF 21 FF FF	
04F 7	C2 EB 04	JNZIP	0760	FF FF FF FF	.DB FFH, FFH, FFH, FFH, FFH,FFH, $08 \mathrm{H}, \mathrm{FFH}, \mathrm{FFH}$,
04FA	C9	RET			$31 \mathrm{H}, \mathrm{FFH}, 34 \mathrm{H}, 37 \mathrm{H}, 09 \mathrm{H}, \mathrm{FFH}, \mathrm{FFH}$
04FB	$\begin{aligned} & 55404609 \text { TABL } \\ & \text { EINIT: } \end{aligned}$	$\begin{aligned} & . \mathrm{DB} 55 \mathrm{H}, 40 \mathrm{H}, 46 \mathrm{H}, 09,12 \mathrm{H}, 08 \mathrm{H}, 10 \mathrm{H}, 11 \mathrm{H}, 0,10 \mathrm{H}, 0,0 \mathrm{BH}, \\ & 0,0,0,0 \end{aligned}$	$\begin{aligned} & 0764 \\ & 0768 \end{aligned}$	FF FF 08 FF FF 31 FF 34	
04FF	12081011		076C	3709 FF FF	
0503	001000 OB		0770	30 FF 3235	.DB 30H, FFH, 32H, 35H, 36H,38H,FFH,FFH, FFH,
0507	00000000				FFH,33H,2DH, 2BH,39H,FFH,FFH
;CLEA	SCREEN ROUTINE		0774	3638 FF FF	
050B	C5 CLEAR:	PUSH B	0778	FF FF 33 2D	
050C	E5	PUSH H	077C	2B 39 FF FF	
050D	OE 00	MVI C,00	0780	TABLE2:	
050F	OD A1:	DCR C	0780	FF FF FF FF	.DB FFH,FFH,FFH,FFH,FFH,FFH,FFH,FFH
0510	CA 2805	J Z A2	0784	FF FF FF FF	
0513	2614	MVI H,14H	0788	FF FF FF FF	.DB FFH,FFH,FFH,FFH,FFH,FFH,FFH,FFH
0515	2E 00	MVI L,00	078C	FF FF FF FF	
0517	79	MOV A,C	0790	FF FF FF FF	.DB FFH, FFH, FFH, FFH, FFH, 51H, 21H, FFH,FFH,
0518	320018	STA 1800H			FFH,5AH,53H,41H,57H,40H,FFH
051B	$3 \mathrm{FF} \quad$ A3:	MVI A,FFH	0794	FF 5121 FF	
051D	77	MOV M,A	0798	FF FF 5A 53	
051E	2 C	INR L	079C	415740 FF	
051F	7D	MOV A,L	07A0	FF 435844	.DB FFH, 43H, 58H, 44H, 45H, 24H, 33H, FFH, FFH,
0520	FE 80	CPI 80H			$20 \mathrm{H}, 56 \mathrm{H}, 46 \mathrm{H}, 5 \mathrm{AH}, 52 \mathrm{H}, 25 \mathrm{H}, \mathrm{FFH}$
0522	C2 1B 05	J NZ A3	07A4	452433 FF	
0525	C3 OF 05	JMP A1	07A8	FF 205646	
0528	E1 A2:	POP H	07AC	5A 5225 FF	
0529	C1	POP B	07B0	FF 4E 4248	.DB FFH, 4EH, 42H, 48H, FFH, 59H, 36H, FFH, FFH
052A	C9	RET			FFH, 4DH, 4AH, 55H, 26H, 2AH,FFH
0700		.ORG 700H	07B4	FF 5936 FF	
0700	TABLE1:		07B8	FF FF 4D 4A	
0700	FF FF FF FF	.DB FFH,FFH,FFH,FFH,FFH,FFH,FFH,FFH	07BC	55262 AFF	
0704	FF FF FF FF		07C0	FF 2C 2B 49	.DB FFH, 2CH, 2BH, 49H, 4FH,29H,28H,FFH, FFH,2
0708	FF FF FF FF	.DB FFH,FFH,FFH,FFH,FFH,FFH,FFH,FFH			$2 \mathrm{FH}, \mathrm{FFH}, 2 \mathrm{CH}, 50 \mathrm{H}, 5 \mathrm{FH}, \mathrm{FFH}$
070C	FF FF FF FF		07C4	4F 2928 FF	
0710	FF FF FF FF	```.DB FFH,FFH,FFH,FFH, FFH,71H,31H,FFH,FFH,FFH, 7AH,73H,61H,77H,32H,FFH```	07C8	FF 2E 2F FF 2B 505 FFF	
0714	FF 7131 FF FF FF 7 A		07D0	FF FF 22 FF	.DB FFH, FFH, 22H, FFH, 7BH,2BH,FFH,FFH, FFH,
0718	FF FF 7A 73				FFH,OD,5DH, FFH,21H,FFH,FFH
071C	617732 FF		07D4	7B 2B FF FF	
0720	FF 637864	.DB FFH, 63H, 78H, 64H, 65H, 34H, 33H, FFH, FFH, 20H, $76 \mathrm{H}, 66 \mathrm{H}, 7 \mathrm{AH}, 72 \mathrm{H}, 35 \mathrm{H}, \mathrm{FFH}$	$\begin{aligned} & \text { 07D8 } \\ & \text { 07DC } \end{aligned}$	FF FF 00 5D FF 21 FF FF	
0724	653433 FF		07E0	FF FF FF FF	.DB FFH, FFH, FFH, FFH, FFH,FFH, $08 \mathrm{H}, \mathrm{FFH}, \mathrm{FFH}$,
0728	FF 207666				$31 \mathrm{H}, \mathrm{FFH}, 34 \mathrm{H}, 37 \mathrm{H}, 09 \mathrm{H}, \mathrm{FFH}, \mathrm{FFH}$
072C	7 A 7235 FF		07E4	FF FF 08 FF	
764	0730 FF 6E 6268	.DB FFH, 6EH, 62H, 68H, FFH, 79H, 36H, FFH, FFH, FFH 6DH, $6 \mathrm{AH}, 75 \mathrm{H}, 37 \mathrm{H}, 38 \mathrm{H}, \mathrm{FFH}$	07E8 07EC	FF 31 FF 34 3709 FF FF	
0734	FF 7936 FF	-	07F0	30 FF 3235	.DB 30H, FFH, 32H, 35H, 36H,38H,FFH,FFH, FFH,F
0738	FF FF 6D 6A				$33 \mathrm{H}, 2 \mathrm{DH}, 2 \mathrm{BH}, 39 \mathrm{H}, \mathrm{FFH}, \mathrm{FFH}$
073C	753738 FF		07F 4	3638 FF FF	
0740	FF 3C 6B 69	.DB FFH, 3CH, 6BH, 69H, 6FH,30H,39H,FFH, FFH,3EH, $3 F H, F F H, 3 B H, 7 O H, 2 D H, F F H$	$\begin{aligned} & 07 F 8 \\ & 07 F C \end{aligned}$	$\begin{aligned} & \text { FF FF } 332 \mathrm{D} \\ & 2 \mathrm{~B} 39 \mathrm{FF} \text { FF } \end{aligned}$	
0744	6F 3039 FF		0800		
0748	FF 3E 3F FF		END		\square
074C	3B 70 2D FF				

A PORTAL DEDICATED TO ELECTRONICS ENTHUSIASTS

DICITAL CODE LOCK

BISWAJIT GUPTA

Aversatile digital code lock circuit is presented here, which can have up to 32-digit long secret code. The length of the secret code can be easily varied by changing the position of jumpers. The available options are to make the code $2-$ - 4 -, 8 -, 16 -, or 32 -digit long. When the keyed-in code matches with the stored secret code, a relay gets energised. The contacts of the relay may be used appropriately to operate, lock, or unlock any device or appliance, as desired by the user.

The circuit makes use of a RAM to store and output the stored code to enable in-situ coding and changing of the code easily. To retain the contents of RAM in case of power failure and to save power, a 4.5 V battery backup arrangement is provided, so that the system may operate in power-down mode with the battery catering to the retention of only the RAM's contents. Thus, the power supply to the circuit can be switched off to minimise the power consumption to about 0.6 mA .

The Circuit

Memory organisation. A 6116 static RAM (2048 x 8-bit) IC5 is used in the circuit with A9 and A10 address pins connected to the ground. Thus, here we are effectively using an address space of 512 locations only. This address space of 512 locations is further divided into 16 pages of 32 locations each. Page selection is done using 4-way DIP switch S2 in the circuit. Thus, in each page, an address space of 32 is available for storing the secret code.

Each digit of the code comprises a hex digit, which can be stored as a nibble, requiring only 4-bit data space. It is stored as data bits D4 through D7 in each location. Data bits D0 through D3 are not used and the corresponding pins are therefore pulled to ground via 10-kilo-ohm resistor R3. Thus, maximum length of a code can be up to 32 hex digits. One can, however, keep one's secret code spread over all the 16 pages randomly. For ex-
ample, one can arrange to store an eight hex-digit secret code as first two digits in 1st page, next three digits in 8th page, next one digit in 3rd page, and the last two digits in 14th page.

PARTS LIST	
Semiconductors:	
	74C922 hexadecimal keyboard encoder
IC2	- 74HC244 octal tri-state buffer
IC3	74HC688 8-bit comparator
IC4, IC7	- 74HC132 quad 2-input
	NAND gate with Schmitt trigger input
IC5	- $61162 \mathrm{k} \times 8$-bit SRAM
IC6, IC8	- 74HC4040 12-stage binary counter
IC9	- 74LS32 quad 2-input OR ga
IC10	- 74LS74 dual J-K
IC11	- 7805 regulator 5V
T1	- BS170 n-channel MOSFET
T2	- BC548B npn transistor
D1, D2,	- 1N4148 switching diode
D3, D4	- 5.1V, 0.25 W zener diode
D6	- 1N4001 rectifier diode
D7, D8	- 1N4007 rectifier diode
LED1	- Red LED
LED2	- Yellow LED
LED3	- Green LED
Capacitors:	
C1, C3	- $1 \mu \mathrm{~F}, 10 \mathrm{~V}$ tantalum
C2	- 100nF ceramic disk
C4	- 470nF ceramic disk
C5	
C6	- $2200 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic
C7	- 100 nF , ceramic disk
Resistors (all $1 / 4$-watt, $\pm 5 \%$ carbon, unless stated otherwise):	
$\begin{aligned} & \text { R1 } \\ & \text { R2, R3, R5, } \end{aligned}$	
R7, R10, R11- 10-kilo-ohm	
R4 - 1.5-kilo-oh	
R6, R8, R9 - 470-ohm	
R12 - 27-ohm	
R13 - 2.7-kilo-ohm	
RN1	- 4x10-kilo-ohm resistor network (5-pin SIP)
Miscel laneous:	
	- 12V, 500-ohm relay, PCB mountable
	- SPDT switch
S2	- 4-way DIP switch
S3	- Push-to-on switch
BZ1	- 12V DC buzzer with inbuilt oscillator
X1	- 230V AC primary to 12V-0-
	$12 \mathrm{~V}, 500 \mathrm{~mA}$ secondary transformer

SRAM 6116 is a volatile type memory. Therefore battery backup is required to retain data during power failures. The circuit around transistor T1, comprising diodes D1 through D4, resistors R4 and R5, capacitor C 4 , and a 4.5 V battery pack connected to pins 24 and 18 of IC5 (SRAM 6116), allows the changeover of the circuit to operate in power-down mode during power failures. In this mode, the static RAM chip retains data, while consuming very little power with as low a current as 0.03 mA to 0.6 mA -depending upon the chip used. For example, HM611L-5 will draw 0.03 mA at 2 V Vdd (in power-down mode), as per databook. This gives a long life to the battery.

Address counter. IC8 (74HC4040) is a 12-stage binary counter, in which the five least significant address lines A0 through A4 (for addressing 32 locations) are sequentially selected on receipt of clock pulses. Selection for the required number of hex digits to be used as secret code can be made by jumpering one of the output pins $(7,6,5,3$, or 2) of IC8 to pin 2 of IC9 (74LS32), using jumper J PN 1 for obtaining 2-, 4-, 8 -, 16-, or 32-digit long secret code, respectively.

Keyboard encoding. 16-key keyboard encoder IC1 74C922 from National Semiconductor is used in conjunction with a 16-digit keypad for encoding the pressed key data. It comprises an internal oscillator for clock generation for its own use and an inbuilt key debounce circuitry. Capacitors C2 and C3 connected to its pins 6 and 5 determine the key scanning frequency and debounce period, respectively.

This chip gives a 4-bit data output from pin 14 through 17, corresponding to a pressed key. Whenever a key is pressed, DA (data available) output pin 12 goes to logic 1, to indicate availability of fresh data at its output pins (14 through 17). This pin 12 reverts to its logic low state when the pressed key is released. The data outputs of IC1 are tri-state. Its output enable $\overline{(O E)}$ pin 13 is grounded through resistor R2 to keep this chip in enabled state. The DA output signal at its pin 12 is used for the following functions via the gates of quad NAND Schmitt IC4 and IC7:
(a) As a clock for 12-stage binary counter IC8 (74HC4040) via Schmitt NAND gates N1 and N8, which advances the counter by one count for every clock.
(b) For sounding of buzzer BZ1 and

Fig. 1: Schematic diagram of versatile digital code lock
quad 2-input ORgate chip, of which only one gate is used here. This gate is wired as a reset circuit (both for auto and manual reset operation) for IC8 and IC6. One can reset both the counters (IC6 and IC8) manually, by pressing reset switch S3.

Auto-reset function will take place whenever preset number of digits of secret code has been entered, either for verification/operation or for registration. In verification mode, the secret code would either be right or wrong. Basically, the auto-reset function keeps the secret code really secret, and is smart enough to confuse an intruder.

Operational mode control circuitry

The R1-C1 combination around mode switch S1 functions as a bounce eliminator. Switch S1 is a secret code verification and registration mode selector switch.

Register mode.
When switch S1 is kept in register mode, logic '0' output of gate N4 enables second section of octal 3state buffer IC2 (74HC244) via pin
responding to the pressed key has been generated for further processing.

Auto-reset circuit. IC9 (74LS32) is a

19 (OE2). At the same time, $\overline{\mathrm{OE}}$ and $\overline{\mathrm{WE}}$ pins of RAM are taken to logic 1 and logic 0 states, respectively, to enable writing

Fig. 2: Power supply for the code lock
data corresponding to each depression of key is written into sequential locations of the selected page/ pages

Oper ate/ verify mode. In operate/
of data into the RAM, while 8-bit comparator IC3 is disabled. Thus, the keyboard data (corresponding to a pressed key) at the output of IC1, buffered by IC2, is present at D4 through D7 pins of RAM (IC5). This data gets stored at an address corresponding to the selected page, via 4way DIP switch S2, and its location is determined by outputs Q1 through Q5 of 12-bit counter IC8.

If the first key-press operation occurs soon after pressing reset switch S3, the first data gets entered at address '0' of the selected page. On release of the key, the counter (IC8) increments by one (address also increments by one), as a result of clock pulse applied to its pin 10. Hence, the next key-pressed data will get written at the incremented address. Thus,
verify mode position of switch S 1 , the state of $\overline{O E 2}$ (pin 19) of IC2, and OE* and $\overline{W E}$ signals (at pin 20 and 21 of RAM 6116) is reverse of that at register mode. Thus, RAM is selected for reading the data corresponding to the address selected via counter IC8. At the same time, IC3 (74HC688), an 8-bit comparator (configured here as a 5-bit comparator), is enabled. It will compare the entered digit of secret code with the SRAM contents at the location selected by counter IC8, assuming that before the start of verification operation, counter IC8 is reset with the help of reset switch S3 so that first address selected is ' 0 '.

When data is entered via keypad for verification, i.e. to open or close the lock, address of SRAM (IC5) will be

Fig. 3: Actual-size, single-sided PCB for circuits shown in Figs 1 and 2

Fig. 4: Component layout for the $P C B$
incremented automatically whenever a pressed key is released (as during register operation). If the data entered via keyboard is found equal on comparison with stored data, the output $\left(\mathrm{O}_{A=B}\right)$ pin 19 of magnitude comparator IC3 will go to logic low for the period the keypad key is kept pressed. On release of the key, pin 19 will come back to its previous state (logic 1), thus creating a pulse.

During logic 0 state at pin 19 of IC3, LED2 will glow to indicate correctness of the code entered. When this LED goes 'off', you may enter the next digit of the secret code. If LED2 does not flash, it means that the digit you entered was not the right one. Now press reset switch S3, and start entering the secret code from the first digit onward again. This kind of error and reset operation will, however, not effect the lock status.

Pin 19 of IC3 is connected to clock input pin 10 of IC6 (74HC4040). In verification mode, whenever a correct digit of secret code is entered, LED2 will flash and IC3 will generate a pulse at its pin 19. This pulse will advance the counter IC6, until the auto-reset function (dependent on position of jumper JPN1) is invoked by current count value of IC8. If all the digits of secret code match the
entered digits correctly, IC6 will provide a pulse at one of its output pins (i.e. 7, 6, 5,3 , or 2), depending upon the selected secret code length. Pin 7 will give this pulse for 2-digit length, pin 6 for 4 -digit length, pin 5 for 8 -digit length, pin 3 for 16-digit length, and pin 2 for 32-digit length of secret code. One of these outputs has to be jumpered to pins 3 and 11 of IC10 using jumper J PN2. In fact, the identical output pins of IC6 and IC8 have to be connected to pins $3 / 11$ (shorted) of IC10 and pin 2 of IC9, respectively, through jumpers J PN2 and J PN1.

IC10 (74LS74) is a dual J-K flip-flop chip, in which both the flip-flops are configured to work in toggle mode. Both the flip-flops get same trigger input through pins 3 and 11 respectively. One of the flip-flops drives LED3 connected to Q1 (pin 5), while output Q2 at pin 9 connected to the base of transistor T2, through resistor R11, drives relay RL1, whose contacts may be used for switching 'on'/"off' supply to a lock or appliance. One could even use it for locking/unlocking of mains supply to any appliance. When the lock is in 'open' state (i.e. RL1 energised), LED3 will be 'on'. LED3, when 'off', will mean 'closed' state of the lock.

The whole circuit (excluding keypad)
can beassembled an a $12 \times 10 \mathrm{~m}$ singlesided, gen-eral-purposePCB, using a few wire jumpers. However, an adual-size, singlesided PCB for thecompletedrait shown in Fig. 1, and that of power supply in Fig. 2, is shown in Fig. 3. Thecomponent layautfor thePCB isshown in Fig. 4.

Thetdal cost ofconstruction of thiscarauitwill notexceed Rs 800 . TheuseofICbasesfor ICswill be agoodpradiceMOSFETBS170usedinthedrait isverysensitivetostaticelectriaty, soitneedstobe handledwith careA 100 nF bypasscapaitor should beusedwitheachchip.

Operation

1.Afterassemblingthearait, recheckall theconnectionsandapplypowerwithautputtingthel Csintotheir bases.Verifythesupplyandgroundpinvoltagesatall thel Cbases. Thenpluginall thechipsintotheirbases, afterturning'off'thepower.
2. Put switch S1 in 'register mode' position. Decide a secret code. Suppose it is a 4-digit long code; select a page using 4-way DIP switch S2.
3. Use jumper J PN1 to extend pin 6 of IC8 to pin 2 of IC9 and jumper JPN2 to extend pin 6 of IC6 to pins 3/pin 11 of IC10.
4. Turn 'on' power and press reset switch S3 momentarily. Now press the keypad key corresponding to the first digit of your secret code. LED1 will light up and buzzer will sound briefly. Then enter the rest of the three digits of your secret code one-by-one in a similar way.
5. Flip switch S1 to 'operate/verify' position, since secret code registration is over. You have to remember the switch S2 combination (i.e. page number) and the secret code. To open or close the lock, make sure that switch S2 is in the same position as used during secret code registration. Now press reset switch S3 momentarily and enter secret code digits one-by-one. On entry of each secret code digit correctly, you will get a confirmation signal through flashing of LED2. After entering all digits, the lock will respond (relay will energise). If the code entered was correct, then LED3 will light up. If secret code has not been entered correctly, re-enter the same after pressing reset switch S3. Switch S1, along with the whole circuit, must be kept hidden while in use, except for the keyboard and switches S2 and S3.

CIRCUIT IDEAS

BINARY TO DOTMATRIK DISPLAY DECODER/DRIVER
 JUNOMON ABRAHAM

Dotmatrix display is suitable for displaying alphanumeric characters and symbols. Dedicated dotmatrix display driver ICs are available, but these are costly and not easily available commercially. It would therefore be wise to make your own dotmatrix display, using easily available common ICs. One speciality of the circuit design presented here is that you can yourself decide the size and shape of the characters. Further, you can design it for any language.

The principle of displaying a charac-
ter is that, for each character, a corresponding bit pattern is stored in an EPROM. When we supply a particular binary number, corresponding to the input hex digits shown in Tablel, bitmap of the character shown against that number gets transferred to the dotmatrix display. For example, for letter ' Z ', you are required to enter hex 23 (referred as page address), i.e. 010 on address lines A9 through A7, and 0011 on address lines A6 through A3. Addresses A2 through A0 (location addresses) are supplied by oscillator-cum-

TABLE I			
Displayed character	Hex input	Displayed character	Hex input
0	00	L	15
1	01	M	16
2	02	N	17
3	03	O	18
4	04	P	19
5	05	Q	1 A
6	06	R	1 B
7	07	S	1 C
8	08	T	1 D
9	09	U	1 E
A	0 A	V	1 F
B	0 B	W	20
C	0 C	X	21
D	0 D	Y	22
E	0 E	Z	23
F	0 F	+	24
G	10	-	25
H	11	\div	26
I	12	x	27
J	13	$=$	28
K	14		

counter IC CD4060，re petitively outputting the required bit pattern， correspond－ ing to bit pat－ tern for＇Z＇in this case．
Fig．2：LED pattern for letter＇A＇

TABLE II								
	응	合	N	용	㟔	通	능	5
D7	0	0	0	1	0	0	0	X
D6	0	0	1	0	1	0	0	X
$\stackrel{0}{0}$ D5	0	1	0	0	0	1	0	X
－D4	1	0	0	0	0	0	1	X
发 D3	1	1	1	1	1	1	1	X
¢ D2	1	0	0	0	0	0	1	X
D1	1	0	0	0	0	0	1	X
D0	1	0	0	0	0	0	1	X
$\begin{aligned} & \begin{array}{l} \frac{9}{0} \\ \frac{0}{0} \\ \underline{X} \\ \hline \end{array} \\ & \hline \end{aligned}$	殅	～	¢	∞	¢	$\stackrel{\sim}{\sim}$	殅	$\stackrel{\times}{\times}$

seehow thebitmap of a character is formed to display any specific character．Here we have used an 8 （rows）x 7 （columns）LED display．We can use either a readymade LED matrix display or assemble one our－ selves．Fig． 2 shows the LED pattern for letter＇A＇whose corresponding bitmap in memory is shown in Table II．Each memory location represents one column of the display．Since seven columns are used，we need seven locations（though counter supplies eight locations／addresses） for each character．The bitmap of each character is stored in one memory page （segment）of eight locations（ $8{ }^{\text {th }}$ location is not used）．The data from the correspond－ ing pages／locations are transferred to the display by scanning the memory locations and columns of the display simultaneously．

The EPROM used for the purpose is $27 C 32$ ，with a memory capacity of 4 kB ． If you want to utilise its full capacity，you can store codes for up to 512 characters． The circuit shown here uses 1 kB of memory space and can show up to 128 characters．

Each character bitmap is stored in a memory page，and a particular memory page（character）is selected by giving its address．This page address is selected via DIP switches S0 through S7．Each page is scanned with the help of counter CD4060，which has an inbuilt oscillator， whose outputs are connected to $A 0, A 1$ ， and A2 lines．The same lines are con－
nected to a decoder（4028）to drive the columns of the display．The rows are con－ nected to the data outputs D0 through D7 of the EPROM．Thus，when a memory location is addressed，its data is output on the corresponding column．The eight memory locations corresponding to the se－
lected letter are consecutively scanned． This process repeats itself at a fast rate． Due to persistence of vision，one sees a steady display of the corresponding memory map．

Table lll shows the data needed to be stored in specific EPROM locations．It ca－

TABLE III										
Address Data		Address Data		Address Data ［E］		Address Data ［L］		Address Data［S］		Address Data［Z］
	［0］	［7］								
000	3 C	038	C1	070	FF	OA8	FF	OEO	62	11881
001	42	039	82	071	91	OA9	01	OE1	91	11983
002	81	03A	84	072	91	OAA	01	OE2	91	11A 85
003	81	03B	98	073	91	OAB	01	OE3	91	11B 99
004	82	03C	90	074	91	OAC	01	OE4	91	11 C Al
005	42	03D	B0	075	81	OAD	01	0E5	91	11D C1
006	3 C	03E	CO	076	81	OAE	01	OE6	4E	11E 81
007	xx	03F	xx	077	xx	OAF	xx	0E7	xx	$117_{[+]} \mathrm{xx}$
	［1］	［8				［M				［＋］
008	00	040	6 E	078	FF	OB0	FF	0E8	80	12010
009	00	041	91	079	90	OB1	40	0E9	80	$121 \quad 10$
00A	41	042	91	07A	90	OB2	20	OEA	80	12210
OOB	FF	043	91	07B	90	OB3	10	OEB	FF	123
OOC	01	044	91	07C	90	OB4	20	OEC	80	FE
OOD	00	045	91	07D	80	0B5	40	OED	80	12410
O0E	00	046	6 E	07E	80	0B6	FF	OEE	80	$125 \quad 10$
00F	xx	047	xx	07F	xx	OB7	xx	OEF	xx	12610
	［2］	［9				［N				127 xx
010	61	048	64	080	3 C	OB8	FF	OFO	FE	［－］
011	83	049	92	081	42	0B9	40	OF1	01	12810
012	85	04A	91	082	81	OBA	20	OF2	01	12910
013	89	04B	91	083	8D	OBB	18	OF3	01	12A 10
014	91	04C	91	084	89	OBC	04	OF4	01	12B 10
015	61	04D	92	085	4A	OBD	02	OF5	01	$12 \mathrm{C} \quad 10$
016	00	04E	7 C	086	2 C	OBE	FF	OF6	FE	12D 10
017	xx	04F	xx	087	x	OBF	xx	OF7	xx	12E 10
	［3］	［A］				［0				12F xx
018	82	050	1 F	088	FF	0 CO	3 C	OF8	F8	［ -1
019	81	051	28	089	10	0 C 1	42	OF9	04	$130 \quad 10$
01A	81	052	48	08A	10	OC2	81	OFA	02	$131 \quad 10$
01B	91	053	88	08B	10	OC3	81	OFB	01	13210
01C	B1	054	48	08C	10	OC4	81	OFC	02	13354
01D	D1	055	28	08D	10	0 C 5	42	OFD	04	13410
01E	8E	056	1F	08E	FF	0C6	3 C	OFE	F8	13510
01F	xx	057	xx	08F	xx	0 C 7	xx	OFF	xx	13610
	［4］					［P］		［		137 xx
020	08	058	FF	090	00	OC8	FF	100	FF	［x］
021	18	059	91	091	00	0C9	90	101	02	13800
022	28	05A	91	092	81	OCA	90	102	04	13944
023	48	05B	91	093	FF	OCB	90	103	08	13A 28
024	BF	05C	91	094	81	OCC	90	104	04	13B 10
025	08	05D	91	095	00	OCD	90	105	02	13C 28
026	08	05E	6E	096	00	OCE	60	106	FF	13D 44
027	xx	05F	xx	097	xx	OCF	xx	107	xx	$13 \mathrm{E} \quad 00$
	［5］					［Q				13F xx
028	E1	060	3 C	098	86	ODO	3 C	108	83	［＝］
029	A1	061	42	099	81	OD1	42	109	44	14028
02A	A1	062	81	09A	81	OD2	81	10A	28	14128
02B	A1	063	81	09B	81	0D3	81	10B	10	14228
02C	A1	064	81	09C	FE	0D4	85	10C	28	14328
02D	92	065	42	09D	80	0D5	42	10D	44	14428
02E	8C	066	24	09E	80	0D6	3D	10E	83	$145 \quad 28$
02F	xx	067	xx	09F	xx	0D7	xx	10F	xx	14628
	［6］					［R				147 xx
030	3 C	068	FF	OAO	FF	0D8	FF	110	80	Note： $\mathrm{xx}=$
031	4A	069	81	OA1	10	0D9	90	111	40	Don＇t care
032	91	06A	81	OA2	10	ODA	90	112	20	
033	91	06B	81	OA3	28	ODB	98	113	1 F	
034	91	06C	81	OA4	44	ODC	94	114	20	
035	4A	06D	42	OA5	82	ODD	92	115	40	
036	24	06E	3 C	OA6	81	ODE	61	116	80	
037	xx	06F	xx	OA7	xx	ODF	xx	117	xx	

ters only to numerics, capital English letters, and some symbols. You are at liberty to store bit patterns for any other data, in any other style, in the EPROM.

The input 'BI' indicating blanking input (actually this is the $\overline{\mathrm{OE}}$ signal of EPROM) can be used for blanking the
display. You can also use this line for converting it into a blinking display by connecting it to a suitable output pin of counter CD4060.

You can also adapt the circuit for responding to ASClI input values by storing the character bit pattern in memory
pages, their address being equal to the ASCII value of that character. Moreover, it is possible to display characters of any language and, if needed, the size of the display can al so be modified by using some additional hardware.

AUTOMATIC SPEED-CONTROLLER FOR FANS AND COOLERS
 PRADEEP VASUDEVA

During summer nights, the temperature is initially quite high. As time passes, the temperature starts dropping. Also, after a person falls asleep, the metabolic rate of one's body decreases. Thus, initially the fan/cooler needs to be run at full speed. As time passes, one has to get up again and again
after some time, and to slow later on. After a period of about eight hours, the fan/cooler is switched off.

Fig. 1 shows the circuit diagram of the system. IC1 (555) is used as an astable multivibrator to generate clock pulses. The pulses are fed to decade dividers/ counters formed by IC2 and IC3. These

The first two outputs of IC3 (Q0 and Q1) are connected (ORed) via diodes D1 and D2 to the base of transistor T1. Initially output Q0 is high and therefore reIay RL1 is energised. It remains energised when Q1 becomes high. The method of connecting the gadget to the fan/cooler is given in Figs 3 and 4.

It can be seen that initially the fan shall get AC supply directly, and so it shall run at top speed. When output Q2 becomes high and Q1 becomes low, relay RL1 is turned 'off' and relay RL2 is switched 'on'. The fan gets AC through a resistance and its speed drops to medium. This continues until output Q4 is high.
 When Q4 goes low and Q5 goes high, relay RL2 is switched 'off' and relay RL3 is activated. The fan now runs at low speed.

Throughout the process, pin 11 of the IC is low, so T4 is cut off, thus keeping T5 in saturation and RL4 'on'. At the end of the cycle, when pin 11 (Q9) becomes high, T4 gets saturated and T5
to adjust the speed of the fan or the cooler.
The device presented here makes the fan run at full speed for a predetermined time. The speed is decreased to medium

Fig. 2. Existing arrangement for fan speed control

ICs act as divide-by-10 and divide-by-9 counters, respectively. The values of capacitor Cl and resistors R1 and R2 are so adjusted that the final output of IC3 goes high after about eight hours.

Fig. 3. Modified arrangement for speed control
is cut off. RL4 is switched 'off', thus switching 'off' the fan/cooler.

Using the circuit described above, the fan shall run at high speed for a comparatively lesser time when either of Q0 or Q1 output is high. At medium speed, it will run for a moderate time period when any of three outputs Q2 through Q4 is high, while at low speed, it will run for a much longer time period when any of the four outputs Q5 through Q8 is high.

If one wishes, one can make the

Fig. 4. Speed-control arrangement for cooler with different windings for various speeds
fan run at the three speeds for an equal amount of time by connecting three decimal decoded outputs of IC3 to each of the transistors T1 to T3. One can also get more than three speeds by using an additional relay, transistor, and associated components, and connecting one or more outputs of IC3 to it.
In the motors used in certain coolers
there are separate windings for separate speeds. Such coolers do not use a rheostat type speed regulator. The method of connection of this device to such coolers is given in Fig. 4.

The resistors in Figs 2 and 3 are the tapped resistors, similar to those used in manually controlled fan-speed regulators. Alternatively, wire-wound resistors of suitable wattage and resistance can be used.

BLOWN FUSE INDICATOR

ASHUTOSH KUMAR SINHA

Generally, when an equipment indicates no power, the cause may be just a blown fuse. Here is a circuit that shows the condition of fuse through LEDs. This compact circuit is very useful and reliable. It uses very few components, which makes it inexpensive too.

Under normal conditions (when fuse is alright), voltage drop in first arm is 2 V $+(2 \times 0.7 \mathrm{~V})=3.4 \mathrm{~V}$, whereas in second
arm it is only 2 V . So current flows through the second arm, i.e. through the green LED, causing it to glow; whereas the red LED remains off.

When the fuse blows off, the supply to green LED gets blocked, and because only one

Fig. 1. Blown-fuse indicator LED is in the circuit,
used to trigger the siren. When the fuse blows, red LED glows. Simultaneously it switches 'on' the siren.

In place of a bicolour LED, two LEDs

the red LED glows. In case of power failure, both LEDs remain 'off'.

This circuit can be easily modified to produce a siren in fuse-blown condition (see Fig. 2). An optocoupler is
of red and green colour can be used. Similarly, only one diode in place of D1 and D2 may be used. Two diodes are used to increase the voltage drop, since the two LEDs may produce different voltage drops.

OVER-/UNDEER-VOITAGE CUT-OFF WITH ON-TIME DELAY
 K. UDHAYA KUMARAN, VU3GTH

Here is an inexpensive auto cutoff circuit, which is fabricated using transistors and other discrete components. It can be used to protect loads such as refrigerator, TV, and VCR from undesirable over and under line voltages, as well as surges caused due to sudden failure/resumption of mains power supply. This circuit can be used directly
as a standalone circuit between the mains supply and the load, or it may be inserted between an existing automatic/manual stabiliser and the load.

The on-time delay circuit not only protects the load from switching surges but also from quick changeover (off and on) effect of

over-/under-voltage relay, in case the mains voltage starts fluctuating in the vicinity of under- or over-voltage preset points. When the mains supply goes out of preset (over- or under-voltage) limits, the relay/load is turned 'off' immediately, and it is turned 'on' only when AC mains voltage settles within the preset limits for a period equal to the 'on' time delay period. The on-time delay period is presetablefor 5 seconds to 2 minutes dura-

base of T4 via zener D4 is connected to capacitor C1, which was in discharged condition. Thus, LED3 and relay RL1 or load remain 'off'.

Capacitor C1 starts charging slowly towards $+12 \mathrm{~V}(\mathrm{~A})$ rail via resistors R6 and R7, and presets
tion, using presets VR3 and VR4. For electronic loads such as TV and VCR, the ontime delay may be set for 10 seconds to 20 seconds. For refrigerators, thedelay should be preset for about 2 minutes duration, to protect the compressor motor from frequently turning 'on' and 'off'.

In this circuit, the on-time and offtime delays depend on charging and discharging time of capacitor C1. Here the discharge time of capacitor C 1 is quiteless to suit our requirement. We want that on switching 'off' of the supply to the load, the circuit should immediately be ready to provide the required on-time delay when AC mains resumes after a brief interruption, or when mains AC voltage is interrupted for a short period due to over-/under-voltage cut-off operation. This circuit is also useful against frequent power supply interruptions resulting from loose electrical connections; be it at the pole or switch or relay contacts, or due to any other reason.

Here supply for the over- and undervoltage sampling part of the circuit [marked $+12 \mathrm{~V}(\mathrm{~B})$] and that required for the rest of the circuit [marked $+12 \mathrm{~V}(\mathrm{~A})$] are derived separately from lower half and upper half respectively of centretapped secondary of step-down transformer X1, as shown in Fig. 1. If we use common 12 V DC supply for both parts of the circuit, then during relay 'on' operation, 12V DC to this circuit would fall below preset low cut-off voltage and thus affect the proper operation of the sampling circuit. The
value of filtering capacitor C 4 is so chosen that a fall in mains voltage may quickly activate under-voltage sensing circuit, should the mains voltage reach the low cut-off limit.

In the sampling part of the circuit, wired around transistor T1, presets VR1 and VR2 are

TABLE I				
Showing State of LEDS for Various Circuit Conditions				
Circuit condition	LED1	LED2	LED3	Relay/Load
Over or under voltage cut-off in operation	ON	OFF	OFF	OFF
On-time delay in operation AC voltage normal after on-time delay	OFF	ON	OFF	OFF

Once the limits have been set, zener D1 will conduct if upper limit has been exceeded, resulting in cut-off of transistor T2. The same condition can also result when mains voltage falls below the under-voltage setting, as zener D2 stops conducting. Thus, in either case, transistor T2 is cut-off and transistor T3 is forward biased via resistor R3. This causes LED1 to be 'on'. Simultaneously, capacitor C2 quickly discharges via diode D5 and transistor T3. As collector of transistor T3 is pulled low, transistors T4 and T5 are both cut-off, as also transistor T5. Thus, LED2 and LED3 are 'off' and the relay is de-energised.

Now, when the mains voltage comes within the acceptable range, transistor T2 conducts to cut-off transistor T3. LED1 goes 'off'. Transistor T5 gets forward biased and LED2 becomes 'on'. However, transistors T4 and T5 are still 'off', since
termed as on-time delay) to breakdown zener D4, transistor T4, as also transistor T5, gets forward biased, to switch 'on' LED3 and relay RL1 or load, while LED2 goes 'off'. Should the mains supply go out of preset limits before completion of the on-time delay, capacitor Cl will immediately discharge because of conduction of transistor T3, and the cycle will repeat until mains supply stablises within preset limits for the on-time delay period.

The on-time delay is selected by adjusting presets VR3 and VR4, and resistor R6. Zener diode D3 is used to obtain regulated 9.1 volts for timing capacitor C1, so that preset on-time delay is more or less independent of variation in input DC voltage to this circuit (which would vary according tothemainsAC voltage). Toswitch 'off' the relay/load rapidly during undesired mains condition, the timing capacitor C1 is discharged rapidly to provide complete control over turning 'on' or 'off' of relay RL1 (or the load). The functioning of the LEDs and relay, depending on the circuit condition, is summarised in TableI.

ONE BUTTON FOR STEP, RUN, AND HAIT COMMANDS

(BASED ON MOTOROLA APPLICATION NOTE)

The logic signals to step, run, and halt a computer or other appropriate digital devices or system may be generated by this circuit, which is operated by just a single pushbutton. The only active devices used are a dual
tarily. The run command occurs if the button is held down for a time exceeding about 300 ms .

This time (300 ms) represents an excellent compromise between circuit speed and accuracy. If this duration is made
be halted if the pushbutton is depressed momentarily when the circuit is in the run mode.

As shown in the figure, module A1 acts as an effective switch debouncer for the pushbutton. For a step command, poking the button quickly will cause ' Q ' output of A1 to go high and trigger module A2 (the monostable for run-and-step operations). The Q output of A1 is also fed to ' D ' input of module A3 (the run-and idle latch). At the same time, the active low $\overline{\mathrm{Q}}$ output of A1 triggers the step one-shot A4, yielding the step function.

The sequence of events discussed above
 also describes theinitial portion of the run command, whereby the step pulse can be used to manually advance a computer's program counter by 1 . The run pulse can be used to instruct the computer to rapidly execute succeeding steps automatically. The Q* output of A2 moves high

much shorter, the circuit may fail to differentiate between the step and run commands, and may generate the run command when thestep command is desired, or vice versa. Also, repeatedly pressing the button rapidly to ini-
one-shot and a dual flip-flop ICs.
The step command is generated each time the pushbutton is depressed momen-
tiate step functions will generate the run command if the duration is set for much more than 300 ms . Finally, the device will

300 ms after the pushbutton is depressed. The positive going (trailing) edge of this pulse then clocks the state of the pushbutton (as detected by A1) into A3.

If the circuit/computer is in run mode, then pressing of the button will cause the circuit to halt the computer by clocking in a logic '0' (synchronously available at data input pin) to the run-and-idle latch A3. Note that the step pulse generated at the start of the halt sequence, as shown in the timing diagram, is of no consequence, since when the step is received, the machine is already in the run mode and will override that command.

October

MOSFIT-BASED 50Hz SINEWAVE UPS-CUM-EPS

R.V. DHEKALE AND S.D. PHADKE

Most of the UPS (uninterrupted power supplies) available in the market internally use a frequency ranging from 100 Hz to 50 kHz . The regulation of output voltage is done using the pulse width modulation technique, which produces a quasi-square waveform output from the inverter transformer. Such an output waveform produces lots of noise, which is not desirable for a computer and other sensitive equipment. This voltage waveform can drive a computer, but not the tubelight, fan, EPBAX, TV, VCR, etc properly. The advantage offered by a UPS is that its changeover period is quite low, so that the computer or any other sensitive load is not interrupted during the mains failure.

EPS (emergency power supply) of various brands, providing 50 Hz squarewave output, can drive the computer, tubelight, TV, VCR, fan, etc, but considerable noise is produced from the EPS or the load. Another drawback of an EPS is that its changeover period is relatively high, so the computer may get reset or continuity of the play mode of the VCR may get interrupted on mains failure.

The circuit

A 50 Hz sinewave offline UPS-cum-EPS circuit is presented here which produces a sinewave output with very low noise level. It drives the equipment/load (<250 watts), which normally operates on 230 V , 50 Hz AC. Changeover period of this system is less than 1 millisecond so that no

Fig. 1: Proposed front and rear panal layouts
interruption in operation of a computer or continuity of the play mode of a VCR and TV is caused. The complete schematic diagram of the circuit is shown in Fig. 2.

When mains is present and is within the specified limits, the same is fed to the load. At the same time, battery is charged. If mains voltage goes below 170 volts (or mains power fails) or above 270 volts, system changes over from mains to back-up mode. In the back-up mode, battery voltage of 12 V DC is converted into 230 V AC and applied to the load within 1 millisecond.

However, if battery voltage drops below 10V DC, or output voltage goes below 225 V AC, there will be a visual and audible indication of low-battery state. During this warning period, one can save the data and switch off the computer safely. But during the low-battery indication, if the computer or load is not switched off, it remains on back-up mode. After the end of back-up time, system switches off automatically, due to activation of battery's deep discharge cut-out circuit, which reduces the power consumption from the battery to a negligible value (only 90 mA).

Inverter control circuit. It uses the basic squarewave (astable multivibrator) oscillator employing IC 555, with 5.1V supply voltage derived from 12V battery by using 5.1V zener ZD3 in series with a resistance. Astable multivibrator is designed for a frequency of 100 Hz , which can be varied above or below 100 Hz using preset PR1. The frequency ' f ' of astable multivibrator is given by the relationship:

$$
\mathrm{f}=\frac{1.44}{(\mathrm{RA}+2 \mathrm{RB}) \mathrm{C}} \mathrm{~Hz}
$$

where RB $=$ In-circuit resistance of preset PR1.

If $R_{A}=220$ ohms and $R_{B}=15$ kiloohms, then $f=100 \mathrm{~Hz}$. Due to the tolarance of the component values, observed frequency may not be exactly
equal to 100 Hz , and therefore preset PR1 may need to be suitably adjusted.

The output of the astable multivibrator is given to pin 5 of the bistable multivibrator wired around IC

7473, which produces the two 50 Hz squarewave outputs at its pins 8 and 9 with a phase difference of 180 degrees between the two. One of the outputs is coupled to the base of transistor T1 through diode D1 and series current-limiting resistor R3, while the second output is given to the base of transistor T2 through diode D2 and series resistor R4. Transistors T1 and T2 act as MOSEFT drivers.

Power output stage. The collector of transistor T1 is connected to the $\begin{array}{lr}\text { gates } & \text { of } \\ \text { MOSFETs } & \text { M1 }\end{array}$ MOSFETs M1
through M3 (referred to as bank 1), while that of transis-
tor T2 is connected to the gates MOSFETs M4 through M6 (referred to as bank 2).
MOSFETs M1 through M3 are connected in parallel-gates of MOSFETs M1 through M3 and those of MOSFETS M4 through M6 are made common. Similarly, drains and sources of MOSFETs in each bank are paralleled as

Fig. 3: Battery current vs load (squarewave O/P)

Fig. 4: Battery current vs load (sinewave O/P)
the collector of transistor T 2 is 0.7 V . Hence, MOSFETs of bank 2 are cutoff while those of bank 1 conduct. This results in a large DC current swing through the other half of the inverter transformer X1 primary. In this way, two banks of the MOSFETs conduct alternately to produce 230 V AC, 50 Hz across the secondary of the inverter transformer X1. Inductance L1
shown in the circuit. Drains of MOSEFTs of one bank are connected to one extreme taping of 9 -volt primary of the inverter transformer X1, and that of the MOSEFTs of the second bank are connected to the other extreme 9-volt taping of the same transformer. Centre tap of the primary is directly connected to the positive terminal of $12 \mathrm{~V}, 7 \mathrm{Ah}$ battery. Capacitor C2 is connected across the secondary of the inverter transformer, either directly or via inductor L1 (wound on the same core as extension of secondary winding), using sine/square slide switch SW2.

When mains power fails, relay gets de-energised and 12 V battery supply is fed to the control circuit through top contacts of the relay to produce squarewave outputs at pin Nos. 8 and 9 of IC 7473 with a frequency of 50 Hz . At any instant, if voltage at pin 8 of IC2 is +5 V , the voltage at pin 9 of IC2 is 0V, and vice versa. Therefore, when transistor T1 conducts, transistor T2 is cut off, and vice versa. When transistor T1 conducts, the voltage at collector of transistor T1 drops to 0.7 V , and therefore MOSFETs of bank 1 remain cut off while collector of transistor T2 is at 5 V . Thus, MOSFETs of bank 2 conduct and the current flows through one-half of inverter transformer X1 primary. During the next half cyde, the voltage at pin 8 of IC2 is 0 V and that at pin 9 is +5 V . As a result, the voltage at the collector of transistor T 1 is +5 V and that at

Fig. 5: Actual-size component-side track layout for the $P C B$

Fig. 6: Actual-size solder-side track layout for the PCB.
and capacitor C2 on the secondary side act as filter/resonant circuit (at 50 Hz) to produce a waveform approaching a sinewave. LED1, when 'on', indicates that the system is on back up.

Charger circuit. This circuit comprises step-down transformer X2, followed by rectifier, regulator, and doublechangeover 12 V relay RLY. Mains supply of 230 V AC is applied across the primary
of the transformer through triac BT136. The gate of the triac is connected to the output of over-/under-voltage cut-off circuit. As long as the mains voltage is between 170 and 270 volts, +5 V is provided to the gate of the triac and hence it conducts. If AC mains voltage goes out of the above-mentioned limits, the gate voltage falls to 0.7 volt and the triac does not conduct.

When traic conducts, $16-0-$ 16 V AC voltage is developed across the secondary of X2. It is converted into DC voltage by the diodes D3 and D4, and the rectified output is given to the input of the 12 V regulator 7812 (IC3). The output of the regulator is connected across the relay coil through series resistor R7, which ensures that the relay just operates when AC mains is at 170 volts (or more).

When mains voltage is within the range of 170-270 volts, relay activates. In this mode, mains voltage is directly routed to the load through N/O contacts (lower) of relay RLY and 4-amp rated contact breaker (CB). LED2 indicates that the system is on mains. At the same time, the rectified voltage from diodes D3' and D4' is made available through N/O contacts (upper) of relay RLY for charging the battery via charging resistance R_{C}. If the mains supply fails or goes out of the range of 170-270 volts, relay de-energises and the battery supply of 12 V is connected to the inverter circuit through N/C contacts (upper). The voltage developed by the inverter goes to the output socket of UPS through the N/C contacts (lower) via 4-amp CB.

Under-/over-voltage cut-

 out. The 230 V AC mains is stepped down to 12 V AC, using transformer X3. It is rectified by the bridge rectifier and filtered by two $\operatorname{Pi}(\pi)$ section filters to reduce the level of ripple voltage. The filtered DC voltage is applied to dual opamp IC5 (used as dual comparator). The reference voltage for the comparators is developed across zener di ode ZD4, which is connected to the filtered DC positive rail via resistor R9. Even if the AC mains voltage varies between 170 V and 270 V , the voltage across zener ZD4 remains constant at 5.1 volts. The cathode of zener diode ZD4 is connected to the inverting input of the comparator IC5(b) and non-inverting input of the comparator IC5(a).Preset PR2 can be used to vary the
inverting terminal voltage of the comparator IC5(a) above and below the reference voltage of 5.1V. Similarly, non-inverting input of the comparator IC5(b) can also be varied above and below the 5.1V reference voltage applied to the inverting input of IC5(b), using preset PR3.

Preset PR2 is adjusted such that when AC mains voltage goes below 170 volts, the voltage at inverting input of comparator IC5(a) goes below 5.1 volts, so that its output goes high. As a result, transistor T3 conducts and its collector voltage (connected to the gate of triac TR) drops to 0.7 volt, and hence the triac cuts off. This causes relay RLY to de-energise and the system changes over to back-up mode of operation. Glowing of LED3 indicates the under-voltage condition.

Similarly, preset PR3 is adjusted such that when mains voltage goes above 270 V AC, the voltage at non-inverting input of the conparator IC5(b) goes above 5.1 volts, so that its output goes high to eventually cut-off the triac, and the system again operates in the backup mode. The overvoltage indication is shown by glowing of LED4.

This means that as long as the mains voltage is within the range of 170 V AC to 270 V AC , the voltage at the collector of transistor T3 is 12 volts, and hence triac TR conducts fully and relay RLY activates. As a result, the system remains on mains mode. Diodes D6 and D7 act as 2-input wired-OR gate for combining the outputs from the two comparators and prevent the output of one comparator going into the output terminal of other comparator. Zener diode ZD6 is used to limit the gate voltage of the traic to 5.1 volts.

Low-battery indicator. This circuit is wired around op-amp $\mu \mathrm{A} 741$ (IC6), which functions as a comparator here. Battery voltage is applied across pins 7 and 4. Voltage at non-inverting input of IC6 is maintained constant at 5.1 volts by zener diode ZD5 and series resistor R17. Voltage at the inverting input of IC6 can be varied above and below 5.1 volts using preset PR4. Preset PR4 is adjusted in such a way that if battery voltage goes below 10 V , the voltage at inverting input goes below 5.1 volts, so that output voltage at pin 6 of IC6 goes high (about 10 V). Hence, LED5 glows and produces intermittent sound from the buzzer, indicating low-battery status.

At the beginning of the indication, the output voltage of inverter would be around

225 V AC. This enables the user to take timely action such as saving data (in case load comprises a computer).

Battery deep-discharge cut-out. If the UPS system keeps operating in the inverter mode, the battery voltage will drop eventually to prohibitively low level (say, 5 volts). If such condition occurs frequently, the life of the battery will be considerably reduced. To remove this drawback, it is necessary to use battery deepdischarge cut-out circuit. If battery voltage goes below 9.5 volts, this circuit will cause the UPS to shut down, which prevents the battery from further discharge.

This circuit is also built around opamp $\mu \mathrm{A} 741$ (IC7) working as a comparator. Voltage at non-inverting input of IC7 is 5.1 volts, which is kept constant by zener diode ZD6 and resistor R20. Preset PR5 is adjusted in such a way that if battery voltage goes below 9.5 volts, IC7 output would go high to turn on SCR. Once SCR conducts, the supply voltage for control circuit drops to near OV. As a result, the control circuit is unableto producegate drive pulses for the two MOSFET banks and the inverter stops producing AC output.

Suppose the mains supply is not available and you want to switch on the UPS on load (say, computer). If battery deepdischarge cut-out is set for a battery voltage of 9.5 volts, this means that you want to 'cold' start the UPS. On initial switching 'on' of the UPS, the starting current requirement from the battery is quite high to cause a drop in battery voltage, due to which battery deep-discharge cut-out circuit would be activated and inverter is not switched 'on'. To overcome this problem, $100 \mu \mathrm{~F}$ capacitor C8 is connected across gate-source terminals of SCR. It provides necessary delay for the battery current/vol tage to settle down to its stable value after switching on.

Reverse battery protection. A 16A to 20A diode (D8) in conjunction with fuse F2 provides reverse battery protection, in case battery is connected with reverse polarity. In case of reverse polarity, fuse F2 will blow and battery supply to the circuit will be immediately switched off.

Protection against no-load. An optional circuit for 'no load' condition, during which the output voltage may shoot up to 290 V AC or more, is shown in Fig. 2 (within dotted lines). The rectifier and filter used are identical to that of undervoltage or over-voltage protection circuit,

Fig. 7: Component layout for the PCB
while the comparator circuit is identical to over-voltage comparator. And hence, no separate explanation is required to be included. The output of the circuit is connected to the gate of SCR1 in Fig 2.

Spike suppression. Since triac TR is connected in series with the primary of charging transformer X2 and gate voltage is obtained from the under-/over-voltage cut-out, a spike is treated on par with
the over-voltage ($>270 \mathrm{~V}$) condition. If mains voltage spike goes above 270 VAC , gate voltage of triac TR becomes 0.7 volt, and hence triac does not conduct. As voltage across the coil of relay RLY is zero, the relay is de-energised and system changes over to back-up mode during voltage spike period. Thus the load is protected from the voltage spikes in the mains.

Back-up time. Using a single battery of $12 \mathrm{~V}, 7 \mathrm{Ah}$ with a load (100 to 120W) comprising computer al ong with colour monitor, the back-up time is 10 to 15 minutes with squarewave output (half with sinewave output). With a battery of 12 V , 180Ah, the back-up time is 4 to 5 hours with squarewave output (2 to 2.5 hours with sinewave output).

Charging resistance For 12V/7Ah battery, charging re sistance R_{c} should be $10 \mathrm{ohms} /$ 20 watts so that the battery will not be heated during charging. Similarly, for $12 \mathrm{~V} / 90 \mathrm{Ah}$ battery, charging resistance Rc should be 4.7 ohms $/ 25$ watts, and for 12V/180Ah battery, 3.3 ohms/30 watts.

Square/sinewave output selection. The selection of sinewave or squarewave output is done using slide switch SW2. In squarewave position, capacitor C2 is directly shunted across 230 V terminal of the secondary of transformer X1, while in sinewave position, coil L1 (extension of 230 V secondary, marked 600V) is added in series with capacitor C2 to resonate at 50 Hz . The power consumption from the battery increases in sinewave output position of switch SW2. The graphs of supply (battery) current versus the load for each position of switch SW2, indicating the comparative values, are shown in Figs 3 and 4. (Note. The secondary winding current rating for 230 V section for 200W output may be chosen as 1 amp , and that for 600 V extension forming inductor L1, the current rating of the winding may be chosen as 300 mA .) Output power. Using six MOSFETs (three per bank) with proper heat sinks with inverter transformer of 16 -ampere primary rating, the UPS-cum-EPS provides power up to 250 watts. With this power, two computers with B\&W monitors, or one computer with colour monitor and a small printer can be driven. Using the same circuit, if you use ten MOSFETs (five per bank) and inverter

Fig. 8: Wiring diagram of chasis/panel mounted components to the PCB
nent-side and solder-side track layoutsfor the PCB are shown in Figs 5 and 6 , respectively. Fig. 7 shows the component layout scheme. The wiring diagram for the chassis and panelmounted components connected to the PCB via connectors (and few directly topads) is shown in Fig. 8.

Thepadsfor a few components are not existing in the PCB using existing pads/ tracks. The same may have to be mounted externally using the available pads in accordance with the
transformer of 32-amp primary rating, the power of the UPS-cum-EPS can be increased to 500 watts or 625 VA .

The transformer ratings as mentioned above are applicable for squarewave output. The transformer primary rating will be 25 per cent higher in case of sinewave output. Also the number of MOSFETs per bank should also be correspondingly higher. Provision is made for mounting 5

MOSFETs in each bank.
PCB and component layout. A doublesided PCB is proposed for the circuit of Fig. 2. Except the optional circuit of ' no load protection', all switches, fuse, CB, LEDs, and transformers are required to be mounted inside the cabinet and front-/

Photograph of author's prototype back-panels of the cabinet suitably Sinewave output waveform as seen on the oscilloscope (refer Fig. 1
for the proposed front- and back-panel layouts). Large battery terminals may be used for terminating the battery leads. The tracks connecting drains and sources of MOSFETs may be suitably strengthened by depositing solder over the same.

The actual-size compo-
circuit diagram of Fig. 2. The affected components are: (a) C9-across battery terminals, (b) D8-reverse palarity battery protection diode, (c) C11 and C12-capacitors across source and gates of bank 1 and bank 2, (d) C2-across pole of SW2 and neutral of transformer X1 secodary, (e) C8-positive end to junction of R22 and gate of SCR1 and negative end to ground.

R-2R D/A CONVERTER-BASED FUNETION GENERATOR USING PIC16C84 MICROCONTROLLER

PRASANNA WAICHAL

Digital to analogue conversion is a process wherein the analogue output voltage or current is a function of the digital input word (binary
code). D to A converters (DACs) find extensive application in analogue input-output (I/O) systems, waveform generators, signal processors, motor-

Fig. 1: Binary weighted resistance DAC

Fig. 2: 8-bit R-2R DAC full-scaleor in bits. Higher the number of bits that a DAC can process, the better will be its resolution.
2. Settling time. It is the
output voltage that can be resolved by a linear DAC and is equal to $1 / 2^{n}$ (or 2^{-n}) of the full-scale span of the DAC. Here, ' n ' represents the number of bits the DAC can process. Resolution can also be expressed speed-controllers, voice synthesisers, attenuators, etc.

DACs are characterised by the following two main performance criteria:

1. Resolution. It is defined as the smallest incremental change in the
quired for the output to stabilise, or change from its previous value to the new value corresponding to fresh digital input word. For a given converter, the output does not change instantaneously when a change in the input occurs.

For an ideal linear DAC, the transfer curve is a linear function of input code which produces a single analogue discrete value and has a zero settling time

Basic classifications

A DAC can be classified into one of the fol owing three types:

1. Current output. Here the output is a current proportional to the input digital word.
2. Voltage output. Here the output is a voltage proportional to the input digital word.
3. Multiplying output. In this type of DAC the output voltage or current is a function of input digital word multiplied by the reference input (i.e. the voltage applied or current fed into its reference terminal).
 in percentage of Fig. 3: Input code versus output voltage transfer function of R-2R DAC

time re- Fig. 4: R-2R network used in conjunction with an op-amp for 3-bit application

Fig. 5: PIC16C84-based R-2R DAC

One of the basic DAC circuits, which uses precision binary weighted resistors
and an op-amp for the conversion pro-
cess, is shown in Fig. 1. The requirement of precision resistors (from R through $2^{n-1} \times R$ values) is the main drawback of this design. It is overcome in the R2R ladder network type DAC. Such a DAC, as shown in Fig. 2, uses only two values of resistors for any combination of bits.

In either of the above two cases, the maximum output voltage $\mathrm{V}_{\text {out }}$, with all

PARTS LIST	
Semiconductor:	
IC1	- PIC16C84, microcontroller
D1-D5	- 1N4148 switching diode
LED1-LED5	- 0.3-inch dia red LED
Resistors (all $1 / 4$-watt, $\pm 5 \%$ carbon, unless stated otherwise):	
R1, R15-R23	- 10-kilo-ohm
R2-R6	- 560-ohm
R7-R14	- 20-kilo-ohm
Capacitors:	
C1, C2	- 27pF ceramic disk
Miscel laneous:	
$\mathrm{X}_{\text {TAL }}$	- 3.575545MHz crystal
S1	- Push-to-on switch

its variants are used in most of the integrating type DACs. While using inte-grated-type DACs, the following knowledge will come handy:
(a) Power supply. Single +5 V to +15 V or double $\pm 5 \mathrm{~V}$ to +15 V
(b) Reference input. Varies from chip to chip.
(c) An operational amplifier is needed at the output to convert current into voltage.
(d) The cost increases drastically as the number of bits (resolution) and/or the speed increases.
(e) Sometimes it is not feasible to use a dual-supply converter for a single-polarity (usually positive) signal or in bat-tery-powered systems.

TABLE II	
Important features of PIC16C84	
Architecture:	RISC CPU
Clock:	10MHz, 400ns instruction cycle
Instructions:	14-bit wide
Program memory:	lk x 14-bit (EEPROM).
RAM:	$36 \times$ 8-bit (SRAM)
Data memory:	64×8-bit for user data
Supply voltages:	2.7V to 5.5V with very low current
	consumption
I/O ports:	13 I/O lines with individual control hav-
	ing 25mA current sinking and 20mA cur-
	rent-sourcing capability
Timer:	8-bit timer/counter with 8-bit pre-scaler
Watchdog timer with on-chip RC oscillator, and 8-level deep	
hardware lock.	

Fig. 7: Component layout for $P C B$ of Fig. 6

Fig. 8: Software flowcharts for generation of various waveforms

The low-cost R-2R ladder-type DAC (Fig. 2) requires no power supply at all, nor any active components such as buffers, op-amps, and storage registers. Its linearity is very good. J ust give the digital input and take the analogue output. It is incredible! At a cost of Rs 5 only for 8 -bit resolution or Re 1 only per bit above 8 bits, you can practically implement any application, which may otherwise require an integrated circuit. You do not have to bother about control signals, memory, or I/O mapping of your micro-system. J ust
hook it up to your parallel port and start working.

Fig. 3 shows the transfer function or the linearity behaviour of the DAC of Fig. 2, while Table I compares the cost of a typical low-cost, 8-bit integrated chip (along with power supply and other parts) with that of R-2R, 8-bit DAC of Fig. 2. The R-2R DAC can be used for most of the applications. An R-2R network can also be used in conjunction with an opamp. A 3-bit application circuit of the same is shown in Fig. 4.

Application

A waveform generator using R-2R and a low-power CMOS microcontroller PIC16C84 (by Microchip Technology Inc., USA) is presented here. All standard waveforms such as sine, square, tri-wave, forward and reverse ramp are successfully generated using the R2R DAC, in conjunction with the above-mentioned microcontroller. Waveforms other than sine are generated quite easily. The sine wave, however, needs a different approach, which makes use of lookup-table technique.

The circuit of the function generator is shown in Fig. 5. The 8-bit data is sent to the DAC by the microcontroller, through one of its ports. The desired function/waveform is selected with the help of a push-to-on switch. The selection is also indicated by a corresponding LED. To keep the application as simple as possible, only fixed-frequency waveform generation is described in this article.

PIC16C84 microcontroller is a CMOS device from Microchip, which is used here in conjunction with an R-2R DAC to realise a function generator, as stated earlier. The important features of this device are reproduced in Table II.

Besides this, the device has some code protection bits which, once enabled, will not allow access to the program memory. These bits are actually programmed into the program memory, but user access to it is not available. (Note For more information on EEPROM programming of PIC16C84, datasheet DS30189D in PDF format, available on Microchip Website, can be used.)

TABLE III		
Look-up table of sine values in decimal and equivalent Hex values (within parenthesis) at 10 degree interval		
100(64)	187(BB)	19(13)
117(75)	177(B1)	6(6)
134(86)	164(A4)	2(2)
150(96)	150(96)	0 (0)
164(A4)	134(86)	2(2)
177(B1)	117(75)	6(6)
187(BB)	100(64)	19(13)
194(C2)	88(58)	29(1D)
198(C6)	71(47)	41(29)
208(D0)	55(37)	55(37)
198(C6)	41(29)	71(47)
194(C2)	29(1D)	88(58)

The 8 -bit port-B of this device has been used as an output port, which is directly connected to the DAC. The 5 -bit port-A has been used both to input keypress data and to output display data to the LEDs. Actually, the I/O pins on this port are time-shared/multiplexed between the keys and the LEDs. This means the same lines are used at one time for reading the keys and at another time for outputting data to drive the LEDs directly. The time-sharing is so fast that the display through LEDs appears to be stable, or any key closure is detected error-free.

The circuit works on 5 V power supply, which can be derived from a 9V PP3 battery (or any other source capable of supplying 7.5 V to 9 V DC) by using commonly available 7805 regulator. The current drain of the circuit is less than 10 mA .

Although the circuit of Fig. 5 can be easily assembled using a general-purpose PCB, a proper actual-size single-sided PCB for the same is given in Fig. 6 along with its component layout in Fig. 7.

Software

The waveform generation technique is pretty easy and one can implement it with any other microprocesor or microcontroller system (e.g. 8085, 8032, Z80, 6800, etc). The program flowcharts for generation of various waveforms are shown in Fig. 8. One can write one's software for the purpose. However, source program for generation of various waveforms using the circuit of Fig. 5, employing PIC16C84 microcontroller, is given in Appendix ' A '.

For programming PIC microcontroller, including the complete development of a system, Microchip offers an integrated development environment (IDE) software
called Mplab. It is available on Technical Library CD-ROM offered (free, on request) from its India Liaison Office, Bangalore. The latest version of this software can also be downloaded from the Microchip Website 'microchip.com'.

The Mplab IDE comes with editor, assembler, and programmer software to support Microchip's device programmers and a software simulator. It also supports programs written in ' C ' language.

For the present device (PIC 16C84), the author has used Microchip PICSTART PLUS development programmer. The software for the same, in PDF format, is also available on the Internet.

Operation

As stated earlier, the present circuit can produce all standard waveforms. After power-up, by default the circuit produces squarewave signal. The LED marked 'square' also lights up to indicate that function. When the 'select' key is pressed once, the output changes to tri-wave. The waveforms are selected sequentially on every depression of the 'select' switch and then repeated. Tested frequency range is 1 Hz to 100 Hz (all waveforms).

Sinewave generation. For waveforms other than sinewave, the data to the DAC changes in binary ascending or descending order. But since sine function is not a linear function, each data is predefined and a value table is used in this case. The value for each step of the sinewave is read and sent to the output port. The resolution depends upon the number of steps. The higher the stepcount, the greater is the resolution, or vicea-versa. A simple look-up table (values at 10° intervals), comprising 36 values

TABLE IV

APPENDIX 'A'
Assembly language program for implementation of function generator using PIC16C84

covering complete 360°, is shown for this purpose. The look-up table (Table III) is to be implemented as per the flowchart
for sinewave generation as shown in Fig. 8.

Various registers implemented in the
internal RAM area of microcontroller, along with their addresses, are shown in Table IV.

CIRCUIT IDEAS

SIMPIE SWITCH MODE POWER SUPPIY

DEEPU P.A.

The SMPS described here is suitable for high-wattage stereos and other similar equipment. The circuit employs two high-voltage power transistors (BU208D) which have built-in re-verse-connected diodes across their collectors and emitters. It can supply about 250 -watt output.

The circuit uses a ferrite core transformer of 14 mm width, 20 mm height, and 42 mm length of E E cores. An air gap of 0.5 mm is required between E E junction. Good insulation using plastic-insulating sheets (Mylar) is to be maintained between each layer of winding.

The number of primary turns required is 90 with 26 SWG wire. The secondary winding employs 17 SWG wire (for 4A load current). Each turn of the secondary develops approximately 2 volts. The reader can decide about the output voltage and the corresponding secondary turns, which would work out to be half the desired secondary voltage. The volt-
age rating of capacitors C 7 and C 8 should be at least twice the secondary output of each secondary section. BY396 rectifier diodes shown on the secondary side can be used for a maximum load current of 3
secondary (output). Ensure that each winding is separated by an insulation layer.

Two separate heat sinks are to be provided for the two transistors (BU208D). The filter capacitor for mains should be of at least $47 \mu \mathrm{~F}, 350 \mathrm{~V}$ rating. It is better to use a $100 \mu \mathrm{~F}, 350 \mathrm{~V}$ capacitor. If the output is short-circuited by less than 8 ohm load, the SMPS would automatically turn off because of the absence of base current.

The $\mathrm{hfe}_{\text {min }}$ (current amplification factor) of BU208D is 2.5 . Thus, sufficient

amperes.
Two feedback windings (L1 and L2) using two turns each of 19 SWG wire are wound on the same core. These windings are connected to transistors T1 and T2 with a phase difference of 180°, as shown by the polarity dots in the figure. First wind the primary winding (90 turns using 26 SWG wire) on the former. Then wind the two feedback windings over the
base current is required for fully saturated operation, otherwise the transistors get over-heated.

At times, due to use of very high value of capacitors C7 and C8 (say $2200 \mu \mathrm{~F}$ or so) on the secondary side or due to low load, the oscillations may cease on the primary side. This can be rectified by increasing the value of capacitor C6 to $0.01 \mu \mathrm{~F}$.

TOIIIT IMDICATOR

K.S. SANKAR

The circuit shown here displays the message 'toiLEt' or 'bUSY', using just six 7 -segment commonanode displays. Such a display can be fixed

on the toilet door and operated using a reed switch and a ferrite magnet pair, suitably fixed on toilet door and its frame, such that the reed switch is closed when
the toilet is busy.
Those segments of the displays for each letter that are common to both the display words 'toiLEt' and 'bUSY' are connected through resistors to ground (indicated by bold lines in the figure). These segments are permanently lit. ' A ' rail is connected to segments that make up the word 'toiLEt' and ' B ' rail for the word

temporarily ground either rail 'A' or rail ' B ' (but not both), and check whether the display shows
'bUSY'. The last two displays are not used in the word 'bUSY'. Rails ' A ' and ' ${ }^{\mathrm{B}}$ ' are active low for the common-anode displays used here. Segments that are to be always 'off are left disconnected and are shown as hollow lines. Those segments which are either lit during 'toiLEt' display (pulled low' via bus ' A ') or during 'bUSY' display (pulled low' via bus 'B') are shown shaded in the figure.

Connecta +5 V supply rail to the common anode pin of all the displays. To test the circuit at this stage,
'toiLET' and 'busy'. Use a 9V DC adapter as the power supply source and stabilise it througha 7805 regulator.

Normally, switch S 1 is open and transistor T1 is forward biased. T1 conducts and thus rail 'A' goes to near 0 V , to display the word toiLEt. If switch S1 is closed, T 1 switches 'off and turns 'on' transistor T2 to take pointB' to near ground potential, and thus the display changes over to indicate the word bUSY .

Thus, when toilet door is open, the magnetically-
operated (or micro-switch operated) reed switch is open and the display indicates toiLEt. Now to make the message changeover to 'bUSY', when someone goes inside and locks the door, the switch needs to be closed on closure of the toilet door. One may also use other methods to achieve the same results.

FEATHER-TOUCH SWITCHES FOR MAINS

D.K. KAUSHIK

An ordinary AC switchboard contains separate switches for switch ing 'on'/'off' electric bulbs, tubelights, fans, etc. A very simple, interesting circuit presented here describes a feather-touch switchboard which may be used for switching 'on'/'off' four or even more devices. The membrane or microswitches (push-to-on type) may be used with this circuit, which look very elegant.

By momentary depression of a switch, the electrical appliance will be 'on'/off', independently.

To understand the principle and design of the circuit, let us consider an existing switchboard consisting of four switches. One live wire, one neutral wire, and four wires for four switches are connected to the switchboard, as shown in the illustration below the circuit diagram.

The switches are removed and the abovementioned wires (live, neutral, L1, L2, L 3 , and L4) are connected to the circuit, as shown in the main diagram.

The circuit comprises four commonly available ICs and four micro-relays, in addition to four micro-switches/membrane switches (push-to-on type) and a few other passive components. IC 7805 is a 5 -volt regulator used for supplying 5 V to IC 2 and IC3 (7476 ICs). These ICs are dual JK flip-flops. The four J-K flip-flops being used in toggle mode toggle with each clock pulse. The clock pulses are generated by the push-to-on switches S1 through S4 when these are momentarily depressed. When a switch is momentarily depressed, its corresponding output changes its existing state (i.e. changes from 'high' to

'low' or v i ce versa). The outputs of flip-flops drive the corresponding relays, in conjunc-
tion with the four relay driver transistors SL100. The wires earlier removed are connected to this circuit. On the switch panel board, the micro-switches are connected, and under the board the connections are wired as suggested above.

Relays RL1 though RL4 are 9V, SPSTtype micro-relays of proper contact ratings.

The circuit may be expanded for six switches by using one more IC 7476, and
an IC ULN 2004 which has an array of seven Darlingtons for driving the relays. So two more micro-switches and relays may be connected in a similar fashion.

This circuit can be assembled on a general-purpose PCB and the total cost should not exceed Rs 300 . It is suggested that the circuit, after assembly on a PCB, may be housed in a box of proper size, which may be fitted on the wall in place of a normal switchboard.

DIEITAL FAN RECULLTOR

C.K. SUNITH

The circuit presented here is that of a digital fan regulator, variable to provide five speed levels as catered for in ordinary fan regulators. The circuit makes use of easily available components. An optional 7 -segment display with its associated circuitry has been provided to display your choice of fan speed.

The heart of the circuit is a modulo-6 binary counter, built around IC2 and IC3 (IC 7476) which are dual JK flip-flops. The counter counts up in a straight binary progression from 000 to 101 (i.e. from

0 to 5) upon each successive clock edge and is reset to 000 upon next clock. The count sequence of the counter has been summarised in Table I.

Each flip-flop is configured to toggle

TABLE I									
Displayed count	Counter count	IC4's active low output	Relay						
activated				$	$	0	000	Q0	NLL
:---	:---	:---	:---						
1	001	Q1	RL1						
2	010	Q2	RL2						
3	011	Q3	RL3						
4	100	Q4	RL4						
5	101	Q5	RL5						
0	000	Q0	NIL						

when the clock goes from high to low. Let us begin with the assumption that the counter reads 000 at power on. The monoshot built around IC1 (NE 555) provides necessary pulses to trigger the

counter upon every depression of switch S1. Upon the arrival of first clock edge, the counter advances to 001 . The outputs of the counter go to IC4 (IC 74138), which is a 3 -line to 8 -line decoder. When IC4 receives the input address 001 , its output Q1 goes low, while other outputs Q0 and Q2 through Q7 stay high. The output Q1, after inversion, drives transistor T1, which actuates relay RL1. Now power is delivered to the fan through the N/O contact RL1/1 of relay RL1 and the tapped resistor R_{T}. For the tapped resistor R_{T}, one can use the resistance found in conventional fan
regulators with rotary speed regulation.
The outputs of the counter also go to IC6 (IC 7447), a BCD to 7 -segment code converter, which, in turn, drives a 7 -segment LED display. When switch S1 is depressed once again, the counter advances to count 010. Now, the output Q2 of IC4 goes low, while Q0, Q1 and Q3 through Q7 go high or remain high. This forces transistor T2 to saturation and actuates relay RL2. The display indicates the counter output in a 7 -segment fashion.

The counter proceeds through its normal count sequence upon every depres-
sion of switch S1 up to the count 101. When switch S1 is depressed once again, normally the counter should read 110 . But the two most significant bits of the counter force the output of NAND gate (IC7) to go low to reset the counter to 000 . The counter now begins to count through its normal sequence all over again, upon every key depression.

The circuit does not provide the facility to memorise its previous setting once it is powered off or when there is a mains failure.

CIRCUIT IDEAS

TELEPHONE RINGER USING TIMER ICS

PRABHASH K.P.

Using modulated rectangular waves of different time periods, the circuit presented here pro-
multivibrator starts generating pulses. If this switch is placed in the power supply
for the ringing to start after the switch is closed. The circuit used also has a provision for applying a drive voltage to the circuit to start the ringing.

Note that the circuit is not meant for connecting to the telephone lines. Using appropriate drive circuitry at the input (across switch S1) one can use this circuit with intercoms, etc. Since ringing pulses are generated within the circuit, only a constant voltage is to be sent to the called party for ringing. duces ringing tones similar to those produced by a telephone.

The circuit requires four astable multivibrators for its working. Therefore two 556 ICs are used here. The IC 556 contains two timers (similar to 555 ICs) in a single package. One can also assemble this circuit using four separate 555 ICs. The first multivibrator produces a rectangular waveform with 1 -second 'low' duration and 2 -second 'high' duration. This waveform is used to control the next multivibrator that produces another rectangular waveform.

A resistor R7 is used at the collector of transistor T2 to prevent capacitor C3 from fully discharging when transistor T2 is conducting. Preset VR1 must be set at such a value that the two ringing tones are heard in one second. The remaining two multivibrators are used to produce ringing tones corresponding to the ringing pulses produced by the preceding multivibrator stages.

When switch S 1 is closed, transistor T1 cuts off and thus the first

www.electronicsforu.com

a portal dedicated to electronics enthusiasts

November

PC-TO-PC COMMUNICATION USING INFRARED/LASER BEAM

K.S. SANKAR

Serial communication between two PCs has been covered earlier too in EFY. However, two separateICs (1488 and 1489) were used in those projects (for TTL to RS-232C and viceversa level conversion), using wireless radio wave technology. This level conversion required use of three different voltages, i.e. $+12 \mathrm{~V},-12 \mathrm{~V}$ and +5 V .

Here is a novel circuit using MAXIM Corporation's IC MAX232, which needs only a single power supply of 5 V for level conversion. Fig. 1 shows the internal functional diagram of MAX232 IC. The communication over the short distance of 2 to 3 metres is established using infrared diodes, as shown in Fig. 2. The range could be increased up to hun-

PARTS LIST	
Semiconductors:	
IC1	- MAX232A +5V powered multichannel RS232 driver/receiver
IC2	- NE555 timer
IC3	- IR RXR module; Siemens SFH-506-38 or Telefunken TSOP-1838
T1	- BC547 npn transistor
T2	- BC548 npn transistor
D1	- 1N4148 diode
LED1-LED3	- Red LED
IRLED1,	
IRLED2	- Infrared light emitting diode
Resistors (all $1 / 4$-watt, $\pm 5 \%$ carbon, unless stated otherwise):	
R1,R2	-47-ohm
R3,R4	- 4.7-kilo-ohm
R5,R9	- 1-kilo-ohm
R6	- 1.2-kilo-ohm
R7	- 10-ohm
R8	- 330-ohm
R10	- 2.2-kilo-ohm
R11	- 10-kilo-ohm
VR1	- 4.7-kilo-ohm preset
Capacitors:	
C1-C5	- $1 \mu, 25 \mathrm{~V}$ electrolytic
C6	- 470 μ, 25V electrolytic
C7,C8	- 0.01μ ceramic disk
Miscel laneous:	
	- 9/25-pin 'D' connector (male/female)
Note: Parts List pertains to circuit in Fig. 3.	

dred metres, using a laser diode module in place of infrared LEDs.

The laser module used is easily available as laser pointer (having about 5 mW power output). It is to be used with its three battery cells removed and positive supply terminal soldered to the casing and OV point to the contact inside the laser module.

Assemble the two prototypes on PCBs or breadboards and connect them to COM1 (or COM-2) port of each PC. Point the Iaser beam of one module to fall on the photodiode of the module connected to the other PC, and vice versa.

Load PROCOMM or TELIX serial communication software and set the port parameters to 9600 n 81 (here, 9600 refers to the baud rate, n stands for parity-none, 8 represents bits per character, and 1 indicates number of stop bits) to establish the communication. File transfer is also possible. The prototype was tested (by the author) between speeds of 1200 and 9600 bauds, including filetransfer between the two PCs. The software program for the purpose was written in 'C' language. The source code of the program is given on page 49 for COM-1 port.

Circuit

Transmitter. Data signals transmitted through pin 3 of 9-pin (or pin 2 of 25 -pin) 'D' connector of RS232 COM port are sent to pin 8 of MAX232 and it converts these EIA (Electronic Industry Association) RS232C compatible levels of $\pm 9 \mathrm{~V}$ to 0/5V TTL levels, as given in Tablel. The output pin 9 of MAX232 IC drives the pnp

transistor SK 100 and pow- Fig. 1: Internal functional diagram of IC MAX232

Fig. 2: Communication between two PCs for a short range using IR diodes, or longer distance using laser
and both PCs 'think' that there is a null modem cable connected between them. Table II shows the correspondence between the various pins of a 9pin (or 25-pin) 'D' connector of serial port of PC. In some PCs, the serial port is terminated into a 9-pin 'D' connector and in some others into a 25 pin 'D' connector.

Testing

Assemble two transceiver modules and connect each of them, using 3-corecables, to Com-1 ports of the two PCs. Place them 15 to 20 cms apart so that the IR LEDs of each module face the photodiode detector of the other.

Power 'on' both the circuits to operate at stabilised 5V DC. You may alternatively use a 7805 regulator IC with a 9 V DC source to obtain regulated 5 V supply.

Check if the MAX232 IC is working properly by testing pin 2 for 9 to 10 V positive supply and pin 6 for -9V supply. MAX232 (refer Fig. 1) uses $1 \mu \mathrm{~F}, 25 \mathrm{~V}$ capacitors C1-C5 as a charge pump to internally generate $\pm 9 \mathrm{~V}$ from 5 V supply. Generally, defective MAX232 ICs will not show a voltage generation of +9 V and -9 V at pins 2 and 6, respectively. Replace ICs, if required. Although $1 \mu \mathrm{~F}, 25 \mathrm{~V}$ capacitors are recommended in the datasheet, the circuit works well even with $10 \mu \mathrm{~F}, 25 \mathrm{~V}$ capacitors, which are easily available.

With both the PCs and supply to the transceiver modules 'on', throw some light

TABLE III	
Base Address for the Communication Ports	
Communication	Base address port
COM1	03 F 8 H
COM2	02 F 8 H
COM3	03 F 8 H
COM4	02 F 8 H

with the torch on the photodiode. LED1 should flicker at the burst frequency rate of the transmitter. This proves that theIR signals are being detected by photodiodes and converted into RS232-compatible levels by the MAX232 and output at pin 7 of MAX232 ICs is available for the PC to read the pulses.

To test the transmitter side, disconnect the module from COM-1 (or COM-2) port of the PC, and with the device pow-
ered 'on', use a short jumper wire from +5 V and touch it at pin 8 of MAX232 IC to simulate a positive pulse. LED2 should turn 'off' and IRLEDs and LED3 should turn 'on' if the wiring is correct. IRLEDs would also be glowing, although one cannot see them glowing. Remove the link wire from +5 V to pin 8 of MAX232 IC and connect back the ' D ' connector to PC's COM-1 (or COM-2) port.

Run a simple communication software
TABLE IV
8250 Registers: Offset from Base Address

Offset	LCR Bit 7	Meaning	Read/write
0	0	Transmitter holding register (THR) [when written to port]	Write
0	0	Receiver data register (RDR) [when read from port]	Read
0	1	Baud rate divisor--low byte (BRDL)	Read/write
1	0	Interrupt enable register (IER)	Read/write
1	1	Baud rate divsior--high byte (BRDL)	Read/write
2	x	Interrupt identification register (IIR)	Read only
3	x	Line control register (LCR)	Read/write
4	x	Modem control register (MCR)	Read/write
5	x	Line status register (LSR)	Read only
6	x	Modem status register (MSR)	Read only

Fig. 4: Actual-size, single-sided PCB for the circuit in Fig. 3

Fig. 5: Component layout for the PCB

TABLE V AL Register Bits					
Bit					
$76543210 \quad$ Use					
TABLE VI Baud Rate					
	Bit 7	${ }^{\text {it }}$		Value	Bits per second
	00	0	0	0	110
	00	01	1	1	150
	01	10	0	2	300
	01	11	1	3	600
	10	0	0	4	1200
	10	01	1	5	2400
	11	10	0	6	4800
	11	11	1	7	9600

TABLE VII Parity						
Bit					Value	Meaning
$\mathbf{4}$	$\mathbf{3}$	0	None			
0	0	0	Odd Parity			
0	1	1	None			
1	0	2	Even Parity			

current. If you use a laser beam, as explained earlier, remove the IRLEDs and the device will track up to 10 metres without any data loss.

Hints

1. Aligning
the laser beam is a problem, but once it is aligned carefully and fixed, the data transmission and reception would be er-ror-free. Transmitter and receiver alignment routines have been included in this software program to aid in the alignment process.
2. Ordinary dear photodiodes should be used for detector. If you use dark-red plastic-encapsulated di odes, you may have problems, as these react only tovery bright natural light or infrared light.

EFY Lab Note. Whiletesting, we did face problems with red plastic-encapsulated diodes as well as clear Darlington detectors (GE's L14F 1), probably because of various light sources in the room caus-

Program Listing for PC-to-PG Gommunication in ' C '

** PROGRAM FOR LASER / IR COMMUNICATION BETWEEN TWO PCs */

* by K.S.Sankar for EFY Nov/Dec'2000 */
\#nclude <stdio.h> /* Header Files */
\#nclude <dos.h>
\#nclude <conio.h>
\#nclude<graphics.h>
\#nclude<stdlib.h>
\#define DEL 25 /* Preprocessor - Delay Variable*/
\#define COM OX03f8 ${ }^{*} 0 \times 02 f 8$-com2,0x03f8com1 */
char gra= ${ }^{\prime}$ '; /* Global Variables */
int flag $=0$;
union REGS inregs,outregs; /* Union declara-
tion for registers */
FILE *fp; * File declaration */
int status;
char temp $=1 \mathrm{n}$ ', t 2 ;
int t1=10;
* The Main Function */
void main(void)
\{
char ch,chr,chs; /* Local Variable */
clrscr();
if(flag $=0$)
** splash();*/ ** Calling Splash routine */
flag++;
textcol or(4);gotoxy(26,6);
cprintf("INFRARED/LASER COMMUNICATION");
gotoxy(34,9);textcolor(10);
cprintf("R");textcolor(7);cprintf("eceive mode");
textcol or(14);gotoxy $(35,12)$;
cprintf("S");textcolor(7);cprintf("end mode");
textcol or(6);gotoxy(37,15);
cprintf("E");textcol or(7);cprintf("xit");
ch = getch(); ; Select Mode */
switch(toupper(ch))
\{
case 'R': R:drscr();
textcol or(4);gotoxy(26,6);
cprintf("INFRARED/LASER COMMUNI-
CATION");
textcol or(138);gotoxy(33,9);
cprintf("RECEIVE MODE");
textcol or(9);gotoxy(33,12);
cprintf("A");textcolor(7);cprintf("Ilign de-
vice");
textcolor(11);gotoxy(33,15);
cprintf("F");textcol or(7);cprintf("ile receive");
textcol or(6);gotoxy(36,18);
cprintf("Q");textcol or(7);cprintf("uit");
chr = getch();
switch(toupper(chr))
\{
case 'A': ralgn();break;
case 'F': f_rcv();break;
case 'Q': main();
default: $\operatorname{lrscr}()$;
printf("Wrong Key Pressed");
goto R;
\}
break;
case 'S': S:Clrscr();
textcol or(4);gotoxy(26,6); cprintf("INFRARED/LASER COMMUNI-

CATION");
textcol or(142);gotoxy(36,9);
cprintf("SEND MODE");
textcol or(9);gotoxy(34,12); cprintf("A");textcolor(7);cprintf("Ilign de-
vice");
textcol or(11);gotoxy(34,15); cprintf(" T ");textcolor(7);cprintf("ransfer
file");
textcol or(6);gotoxy(38,18);
cprintf("Q");textcol or(7);cprintf("uit");
chs = getch();
switch(toupper(chs))
\{
case 'A': salgn();break;
case T': f_snd();break;
case 'Q': main();
default: $\operatorname{drscr}($ ();
printf("Wrong Key Pressed"); goto S;
\}
break;
case 'E': clrscr();
textcolor(143);
gotoxy(35,13);
cprintf("GOOD BYE");
exit(1);
default: drscr();
printf("Wrong Key Pressed");
main();
return ;
\}
\}

* Function for receive (For Device Alignment)
*/
ralgn(void)
\{
char st ="; ** Local variables */
clrscr();
gotoxy(30,2);
textcol or(10);
cprintf("RECEIVE MODE :");
textcolor(9);cprintf(" ALIGN DEVICE");
printf("1 n");
initial(); **Call Initialisation routine */
loop:if(!kbhit())
if(st $=0 \times 04) *$ Check for end of Transmis-

sion */

\{
clrscr();
textcol or(140);
gotoxy(30,12);
cprintf("ALIGNED PROPERLY");
gotoxy(48,24);
printf(" Press any key to quit .");
getch();
main(); ${ }^{*}$ Got to main function after aligning properly */
\}
status $=$ inp(0X3fd); **Checking status at coml port */
if((status \& 0x01) $=0 \times 00)$ * Check for Data
Ready */
goto loop;
else if(!kbhit())
\{
st =inp(COM); ;*Get character from
coml port till */
printf("\%c",st); /* key hit or end of transmission */
goto loop;
\}
else
main(); ; *Call main function if key hit */
\}
return;
\}
*Function for File Receive */
$\mathrm{f}_{\bar{\prime}} \mathrm{rcv}()$
int flag=0,bytecount=0,count; /* Local Variables */
float ot $=0.00$, nt $=0.00$;
char ch,st[55000],fnm[30];
drscr();
initial(); ${ }^{*}$ Calling Initialisation Routine */
ot $=\operatorname{clock}() / 18.2 ;$ /*Calculate exec time in secs from start of program */
gotoxy(2,2);
printf("FILE NAME ? : ");
fp=fopen(gets(fnm),"wb"); *Get file name in write mode */
gotoxy $(26,10)$;
printf("(Ready for) RECEIVING DATA");
gotoxy(50,24);
textcol or(138);
cprintf("Don't KEY IN may loss data");
loop: $\mathrm{nt}=\operatorname{clock}() / 18.2 ;{ }^{*}$ Calculate exec time in
secs from start of
program */
status = inp(0X3FD);*Get character from
coml port */
if((status \& $0 \times 01)=0 \times 00) \not *^{*}$ Check for Data
Ready */
\{
/* Check for no data reception for five seconds
after
start of reception if no data is received con-
tinue other process */
if((bytecount >0) \& \& (nt-ot)>5.0)
\{
drscr();
for(count=0;count flag;count++)
\{
gotoxy(26,10);
textcol or(11);
cprintf(" Saving data in");
gotoxy(43,10);
textcol or(12);
cprintf(" \%s",fnm);
*Dump the data received in a File */
fprintf(fp,"\%c",st[count]);
\}
fclose(fp);
gotoxy(26,13);
textcol or(11);
cprintf(" File \%s of \%d bytes created
",fnm,count);
gotoxy(50,24);
textcol or(7);

CONSTRUCTION

cprintf(" Press any key to quit .");
getch();
main();
\}
goto loop;
\}
else if(!kbhit())
\{
st[flag] = inp(COM);*Get character from
Coml port */
flag++;
bytecount++; ot = $\operatorname{cock}() / 18.2 ;$ *Calculate exec time dur-
ing receiving */
goto loop;
\}
else
\{
**If transmission is cut terminate abnormally
*/
drscr();
for(count=0;count 4 lag;count++)
\{ gotoxy(26,3); textcol or (140); cprintf(" TERMINATED ABNOR-
MALLY ");
gotoxy $(26,10)$;
textcol or(11); cprintf(" Saving data in"); textcol or(12); cprintf(" \%s",fnm);
fprintf(fp,"\%cc",st[count]);
\}
fclose(fp);
gotoxy(26,13);
textcol or(11);
cprintf(" File \%s of \%d bytes created
",fnm,count);
sleep(5);
main(); ;*Go to main after dumping in file */ \}
return;
\}
** Function for send align (for device alignment) */
salgn(void)
\{
int flag=0; * Local Variables */
char st[127];
drscr();
initial();
textcol or(14);
cprintf("Type the sentence (< 127 chars)");
puts(" n ");
gets(st); ** Get string to send */
loop:status =inp(0X3FD); ** Get com1 port status */
if((status \& $0 \times 20)=0 \times 00) /^{*}$ Check Transfer holding register empty */ goto loop;
else
do
\{
if(!kbhit()) /* Check for key hit */
\{
outport(COM,OXOD); $\boldsymbol{\mu}^{*}$ Send carriage return
*/
outport(COM, OXOA); * * Send line feed */ if(flag=strlen(st)) $*^{*}$ Check for length of string*/

```
printf("\ n")
    flag=0;
    outport(COM,OXOD);
    /* Send carriage return */
    delay(5);
    outport(COM,0XOA); ** Send carriage return
*/
    delay(5);
}
    else
    outport(COM,st[flag]); * Send character to
com1 port*/
    printf("%c",st[flag]);
    flag++;
    delay(DEL);
    }
    }
    if(kbhit()) ** Check key hit */
    {
        delay(1);
            outport(COM,0x04);**Send End of
transmission */
                    main();
        }
    while(!kbhit());
}
    **Function for file transfer*/
f_snd()
{
int flag=0,count=0,fl; /* Local Variables */
char ch,st[55000],fnm[20];
clrscr();
initial(); / Calling Initialisation Routine */
gotoxy(2,2);
printf("FILE NAME ?:");
fp = fopen(gets(fnm),"rb"); /* Get file name to
be sent */
    if(fp=NULL)
    {
    drscr()
    gotoxy(35,13);
    printf(" FILE NOT FOUND !");
    delay(1000);
    main();
    }
else
    fl =filelength(5); * Calculate file length */
    gotoxy(23,20);
        printf("File being transferred has %u
bytes",fl);
        do
        ch =fgetc(fp);
        st[count] =ch;
        count+;;
        }
    while(count<=fl);
    }
fclose(fp);
    loop: status = inp(0X3FD); /*Check com1 port
status */
        if((status & 0x20)=0x00)/* Check Trans-
fer holding register empty */
    goto loop;
        else
    do
    if(flag={l) )*Check for file length */
    }
    else
{
    outport(COM,st[flag]);*Send each character
in thefile*/
    printf("\ t%004x",st[flag]);
    flag++;
    delay(DEL);
    }
    }
    while(!kbhit()); * Check for key hit */
}
    /* nitiialisation Function */
initial()
{
inregs.h.ah =0; /*Initialisation of port */
inregs.h.al = 0X63; /* Baudrate, Parity ,
Databits,Stopbit(s) */
inregs.x.dx =0; /*Select port COM1 */
    int86(0x14,&inregs,&outregs);/*Complete
Communication service Interrupt*/
}
/*Function for Splash screen*/
splash(void)
{
int d=DETECT,m,j,i;
struct palettetype pal; /* Structure for palette
colours*/
initgraph(&d,&m,"'); /*Initialisation for splash
screen */
getpalette(&pal); /*Get palette colours*/
for(i=0;i<=pal.size;i++)
setrgbpalette(pal.col ors[i],i*5,i*4,*4);*Combi-
nation of RGB colours*/
setfillstyle(8,8);
setcol or(15);
settextstyle(1,0,4);
setbkcolor(4);
for(i=0;i<17;i++) |* Writing text with RGB
palette colors */
{
    setcolor(i);
    outtextxy(45+i,200+i,"PC to PC Laser/IR
Communication");
}
sleep(1);
cleardevice();
for(i=0;i<l7;i++)\quad** Writing text with RGB
palette colors */
{
    setcolor(i);
    outtextxy(175-i,200+i,"Mostek Electronics");
}
sleep(1);
cleardevice();
for(i=0;i<l7;i++)\quad** Writing text with RGB
palette colors */
{
setcolor(i);
    outtextxy(160+i,175+i,"K.S.Sankar");
}
sleep(1);
cleardevice();
closegraph();
}
/*--end---*/
```

gotoxy(50,24); printf(" Press any key to exit !"); getch(); main(); /*Call main function */

in Table III. The offset address of the registers used in serial communication is given in Table IV.

For serial port initialisation, the program makes use of BIOS interrupt 14 H service 00 H . It initialises the serial port pointed to by the contents of
ing corruption of the data. Finally, we succeeded, after modification of the circuit as shown in Fig. 3. We were able to flawlessly transfer files, from about 5metre distance, between two 386-based PCs. We included a 38 kHz modulator in the transmitter section and used IR re ceiver module, which includes a bandpass filter and demodulator for 38 kHz carrier. Please refer to the author's circuit idea captioned 'Proximity Detector' in this issue for the working principle etc. For better understanding of the software program given by the author, we have included certain additional information in the succeeding paragraphs.

The base addresses for the serial communication ports in a PC are shown
dx register (0 for Com-1 and 1 for Com-2 port). The contents of 'al' register initialise the specific communication port for baud rate, parity, stop-bit code, and character-size code as per Table V (and expanded in Tables VI through IX respectively).

The transmitter holding register (THR) and receiver data register (RDR) both at address Base+0 (the former being write(only) and latter being read (only)) act as buffers during transmission and reception, respectively, of a character. The other most important register, which is referred to in the software program frequently, is the line status register (LSR) at Base+5 (i.e. 03FDH for COM-1 port or 02FDH for COM-2 port).

Meaning of each of the bits of line status register is given in Table X. Its bit 0 is set when a byte is logged in the receiver buffer register and cleared when the byte is read by the CPU. Its bit 6 is set when both the transmitter holding register and the transmitter shift register are empty.

Presently, the software program is meant for COM-1 port initialised for 600 bauds. It can bechanged for 1200, or 2400 , or 4800 , etc by changing the contents of 'al' register in the initialisation function to 83 H , or A 3 H , or C 3 H , etc in place of 63H. Similarly, for using COM-2 port, change all register addresses starting with OX3f.. to OX2f.. etc in the program.

With the information included in the tables and some knowledge of 'C' programming, the readers would be able to understand the program with the help of comments already included at various places in the program. The executable file as well as the source code will also be included in the CD available (optionally) with EFY Dec. 2000 issue

The source code as well as executable files are proposed to be included in next month's EFY-CD.

MULTI-EFFECT CHASER LIGHTS USING 8051 MICROCONTROLLER

ADITYA U. RANE

The 8051 microcontroller, first developed by Intel, finds many applications in small development systems such as speed control of DC motors, timers, process-control applications, and temperature controllers. One of its simple applications as multi-effect chaser lights is described in this project.

Here the microcontroller 8051 controls the switching sequence of eight triacs (TR1 through TR8) via the buffer transistors T1 through T8, as shown in the schematic diagram of Fig. 1. Each triac, in turn, may be used to control a series of bulbs (with a total voltage drop of 230 V AC and the current drawn through BT136 triacs not exceeding 4 amp).

Features

 of 8051 microcontroller. The heart of the circuit is the 8051 microcontroller. Some of the important features of the controller are as Fig. 1: Schematic diagram of multi-effect chaser lights

- 8-bit CPU with register A (accumulator) and register B .
- 16-bit program counter (PC).
- 16-bit data pointer (DPTR).
- 8-bit program status word (PSW).
- 8-bit stack pointer.
- 128 bytes of internal RAM.
- No ROM for 8031, 4k ROM for 8051, and 4k EPROM for 8751.
- Two external and three internal interrupt sources.
- Four programmable input-output ports/registers.

One of the important parts of the 8051 CPU is its oscillator section. The oscillator section is present on the chip itself, only quartz crystal has to be con-

	TABLE I
Pins	Use
P3.0 (RXD)	Receive data serially
P3.1 (TXD)	Transmit data serially
P3.2 (INT0)	External interrupt zero
P3.3 (INT1)	External interrupt one
P3.4 (T0)	I/P pin for timer 0
P3.5 (T1)	I/P pin for timer1
P3.6 (WR)	External memory write pulse
P3.7 (RD)	External memory read pulse

cussed relates to its input-output (I/O) ports. The 8051 has a total of four 8-bit ports, namely, $\mathrm{P} 0, \mathrm{P} 1, \mathrm{P} 2$, and P 3 .

PO. The PO port may be used as input, output, or as combined low-order address and a bidirectional data bus for external memory, which is nected externally between pins 18 and 19. The crystal frequency should range between 1 MHz and 16 MHz for proper functioning of the controller. If this frequency is taken below 1 MHz , there is a chance of losing data of its internal RAM.
an alternate function.
P1. Port P1 does not have any alternate function. It means that these pins are used for interfacing input-output devices like ADC, DAC, 7-segment displays, LCD, keyboard, etc.

P2. Port P2 happens to be the highorder address lines, i.e. A8-A15. This port can be used for interfacing l/O devices. It should be noted that port 2 is changed momentarily by the address signals when supplying the byte of a 16-bit address.

P3. Port 3 functions in a fashion similar to that of port 1. Each pin of port P3 performs different operations as shown in Tablel.

Hardware

The controller is interfaced with the external memory (EPROM) via the oc-

Pin 31 happens to
be the external access pin for the controller. If this particular pin is grounded, 8051 fetches program from the externally connected ROM/EPROM. And if it is connected to Vcc, it starts executing the program from the internal ROM that has 4 k address space (0000H-OFFFH). For 8031, there is no internal ROM present, and hence this pin has to be grounded for its proper operation.

When internal ROM is used, and if the program exceeds the 4k internal ROM address space, then after the last address OFFFH, it starts executing the program from externally connected ROM/ EPROM. The externally connected ROM/ EPROM can be increased up to 64 k , i.e. 0000H-FFFFH. In the case of RAM, the same can be extended up to 64k.

It should be noted that the 8051 is organised such that data memory and program memory can be two entirely different physical memory entities. Another impor-

Fig. 2: PCB layout for the circuit
 tant aspect to be dis- Fig. 3: Component layout for the PCB

Fig. 4: Output code format from port P1

| P1.7 P1.6P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 0 0 0 0 0 | 0 | 1 |

Fig. 5: Output code format for setting only P1.0
tal 'D'
lat ch
74LS373.
T h e purpose of using 74LS373 is to de-multiplex the address lines and the data lines. Hence, after de-multiplexing, AD0-AD7 forms two sets of lines-address lines AO-A7 and data lines D0-D7. The higher-order address lines A8 to A15 are directly available from 8051 pins.

During the memory access cycle, port PO first outputs lower bytes of 16-bit memory address and then the same port acts as bidirectional data bus to read a byte of memory, whereas port P2 provides the higher byte of memory address during the read cycle. It is further seen that the lower-order address byte of port P0 gets latched into external register of 74373 (IC2) to save the particular byte. The ALE (Address latch enable) pulse provides the precise timing to the 74LS373 for latching the low-order address.

If the memory access is meant for the program memory, the $\overline{\text { PSEN }}$ signal goes low and enables the EPROM to output the code on the data bus. The purpose of using $\overline{\text { PSEN }}$ (program store enable) is that it provides the output signal for the program memory/code memory. When this signal goes low, con-

	PARTS LIST
Semiconductors:	
IC1	- 8051 microcontroller
IC2	- 74373 octal 'D' type latches
IC3	- 2764 EPROM 8 -kbytes
IC4	- 7805 regulator +5V
T1-T8	- BC547 npn transistors
TR1-TR8	- BT 136, triac
LED1-LED8	- Red LED
Resistors (all $1 / 1$-watt, $\pm 5 \%$ carbon, unless stated otherwise):	
R1-R16	- 560-ohm
R17	- 47-ohm
R18	- 10-kilo-ohm
Capacitors:	
C1, C2	- 30pF ceramic disk
C3	- 100 $\mathrm{FF}, 16 \mathrm{~V}$ electrolytic
C4, C5	- 10ヶF, 25 V electrolytic
Miscel laneous:	
$\mathrm{X}_{\text {TAL }}$	- 12MHz quartz crystal
L1-L8	- L1 through L8 could each
	be a series of bulbs with to-
	tal voltage-drop of 230 V AC
	- Heat-sink
S1	- Push-to-on switch

Fig. 6: Hex code for Fig. 3

Fig. 7: Hex code for setting P1.0 and P1.7 bit
troller can read instruction byte from the program memory.

Under the program control, 8051 provides the output to port P1, which is further coupled to the base of driver transistors T1 through T8 (BC547). A logic 1 at any of the output pins of port P1 will drive the corresponding LED as well as the gate of the triac. The corresponding triac therefore fires to drive the lamp/lamps connected between its terminal A2 and the neutral line (N). If you use, say, 12 V lamps, you may connect about 20 lamps in series. If each lamp is of 25 -watt (passes about 2A current) rating, you may connect two rows of 20 such bulbs across A2 terminal of each triac and neutral line. The software program determines the triggering sequence of the triacs to provide the lighting effects.

Software

As mentioned earlier, lighting of bulbs is controlled by port P1 output code format. During the execution of the program, the code stored from memory location 0023 H up 007 CH (total locations are thus 59 H or 89 decimal) will get loaded into the accumulator one by one and will get transferred to port P1. If the format of these codes or their sequence is changed, the output too will get altered in same manner. Please note that outputting logic 1 from any pin (equivalent to setting a specific bit) will switch 'on' the corresponding triac (and the series of bulbs connected across its terminals A2 and N), whereas outputting logic 0 from the same pin of port P1 (equivalent to clearing/resetting the specific bit) will switch it 'off'. The output code format from port P1 is shown in Fig. 4.

Example 1: If there is a requirement to set only P1.0 bit, the output format from port P1 will be as shown in Fig. 5.

For converting the above format to

Program Listing For Multi-effect Chaser Lights

Add.	Code	Label	M nemonics	Comments	Add.	Code	Label	M nemonics	Comments
			ORG 0000H	;ROM starting address	$003 F$	01		DB 01H	
0000	E4		CLR A	;Clear contents of accumulator	0040	11		DB 11H	
0001	759000		MOV P1,\#00H	;Clear port 1 (off all LEDs)	0041	22		DB 22H	
0004	900023		MOV DPTR,\#0023H	;Moving immediate DPTR	0042	44		DB 44H	
				;with 0023 (starting address of	0043	88		DB 88H	
				;0/P codes)	0044	44		DB 44H	
0007	7B00	LABEL2:	MOV R3,\#00H	;Clearing the contents of	0045	22		DB 22H	
				register R3	0046	11		DB 11H	
0009	E4	LABEL1:	CLRA	;Clear accumulator	0047	33		DB 33H	
000A	2B		ADD A,R3	;Adding the contents of	0048	77		DB 77H	
				;accumulator and register R3	0049	FF		DB FFH	
000B	OB		INC R3	;Incrementing the contents of	004A	77		DB 77H	
				;register R3 by 1	004B	33		DB 33H	
O00C	93		MOVC A,@A+DPTR	;Copy the code byte, found at	004C	11		DB 11H	
				;ROM address formed by adding	004D	81		DB 81H	
				;A dn the DPTR, to A	004E	42		DB 42H	
O00D	F590		MOV P1,A	;Move the content the contents	004F	24		DB 24H	
				;of accumulator to port 1	0050	18		DB 18H	
000F	1116		ACALL DELAY	;Calling delay	0051	24		DB 24H	
0011	BB59F5		CJ NE R3, $\# 59 H$,		0052	42		DB 42H	
			LABEL1	;ter R3 with 59H and jump to	0053	81		DB 81H	
				;labell if not equal else continue	0054	C3		DB C3H	
0014	80F1		SJ MP LABEL2	;Short jump to label2	0055	E7		DB E7H	
0016	7801	DELAY:	MOV R0,\#01H	;Move immediate register R0	0056	FF		DB FFH	
				;with 01H	0057	E7		DB E7H	
0018	7900	LABEL5	$5: M O V ~ R 1, \# 00 H$;Move immediate register R1	0058	C3		DB C3H	
				;with 00 H	0059	81		DB 81H	
001A	7A00	LABEL4	4:MOV R2,\#00	;Move immediate register R2	005A	01		DB 01H	
				;with 00H	005B	02		DB 02H	
001C	DAFE	LABEL3	3:DJ NZR2,LABEL3	;Decrement the content of	005C	04		DB 04H	
				;register R2 till it becomes zero	005D	08		DB 08H	
001E	D9FA		DJ NZ R1,LABEL4	;Decrement R1 till zero	005E	10		DB 10H	
0020	D8F6		DJ NZ R0,LABEL5	;Decrement R0 till zero	005F	20		DB 20H	
0022	22		RET	;Return	0060	40		DB 40H	
0023	01	DB 01H	;DB(Define Byte) is		0061	80		DB 80H	
0024	02	DB 02H	;the assembler directi		0062	40		DB 40H	
0025	04		DB 04H		0063	20		DB 20H	
0026	08		DB 08H		0064	10		DB 10H	
0027	10		DB 10H		0065	08		DB 08H	
0028	20		DB 20H		0066	04		DB 04H	
0029	40		DB 40H		0067	02		DB 02H	
002A	80		DB 80H		0068	01		DB 01H	
002B	40		DB 40H		0069	03		DB 03H	
002C	20		DB 20H		006A	0 C		DB OCH	
002D	10		DB 10H		006B	30		DB 30H	
002E	08		DB 08H		006C	CO		DB COH	
002F	04		DB 04H		006D	30		DB 30H	
0030	02		DB 02H		006E	0 C		DB OCH	
0031	01		DB 01H		006F	03		DB 03H	
0032	03		DB 03H		0070	OF		DB OFH	
0033	07		DB 07H		0071	F0		DB FOH	
0034	OF		DB OFH		0072	FF		DB FFH	
0035	1F		DB 1FH		0073	00		DB OOH	
0036	3F		DB 3FH		0074	FF		DB FFH	
0037	7 F		DB 7FH		0075	00		DB OOH	
0038	FF		DB FFH		0076	FF		DB FFH	
0039	7F		DB 7FH		0077	AA		DB AAH	
003A	3 F		DB 3FH		0078	55		DB 55H	
003B	1F		DB 1FH		0079	AA		DB AAH	
003C	OF		DB OFH		007A	55		DB 55H	
003D	07		DB 07H		007B	AA		DB AAH	
003E	03		DB 03H		007C	55		DB 55H	

normal hex level, you have to apply 8421 logic (Fig. 6) and you get 01H.

Example 2: To set P1.0 and P1.7, you have to output 81H from port P1 (Fig. 7).

In the software program, total codes to be displayed are $007 \mathrm{CH}-0023 \mathrm{H}=$ 0059 H , as mentioned earlier, and hence 59 H is loaded in the main program at memory location 0012H. Further, register R3 being an 8 -bit register, the
maximum count is restricted to FFH (255 decimal). Since we are comparing the contents of register R3 with 59 H , when register R3 reaches that count, the compare instruction gets satisfied and it jumps to label 2 (in the program). In case you wish to extend the codes to be output from port P1, the loaded count at memory location 0012 H has to be altered correspondingly. The program, when run, produces an eye-catching
lighting effect. The complete program listing is given in the box above.

An actual-size, singlesided PCB for the circuit in Fig. 1 is shown in Fig. 2 and its component layout is shown in Fig. 3. It is important that neutral and phase (live) lines of 230 V AC are not interchanged, because only the neutral line is required to be grounded to PCB common ground and not the live line.

CIRCUIT IDEAS

* * *

YASH DEEP

Normally, chargers available in the market do not have any sort of control except for a rotary switch that can select different tappings on a rheostat, to vary the charging current. This type of control is not adequate because of the irregular fluctuations in the mains supply, rendering the control ineffective.

A simple circuit intended for automatic charging of lead-acid batteries is presented here. It is flexible enough to be used for large-capacity inverter batteries. Only the rating of transformer
avoid relay chattering. It is designed for a window of about IV. During charging, when the battery voltage increases beyond 13.64 V , the relay cuts off and the float charging section continues to work. When battery voltage goes below 11.66 V , the relay is turned on and direct (fast) charging of the battery takes place at around 3A.

In the Schmitt trigger circuit, resistors R1 and R2 are used as a simple voltage divider (divide-by-2) to provide battery voltage sample to the inverting input terminal of IC1. The non-invert-
ing input terminal of IC1 is used for reference input derived from the output of IC2 (7806), using the potentiometer arrangement of resistors R3 (18 kiloohm) and R4 (1 kilo-ohm).

LED1 is connected across relay to indicate fast charging mode. Diodes D3 and D6 in the common leads of IC2 and IC3 respectively provide added protection to the regulators.

The float charging section, comprising regulator 7812, transistors T3 and T4, and few other discrete components, becomes active when the battery voltage goes above 13.64 V (such that the relay RL1 is de-energised). In the energised state of the relay, the emitter and collector of transistor T4 remain shorted, and hence the float charger is ineffective and direct charging of battery takes place. and power transistor needs to be increased.

The circuit has been basically designed for a car batt e r y (about 40 Ah rati n g), which could be used for lighting two 40W tubelights. The circuit includes Schmitt trigger relay driver, f l o a t charger, and battery voltage monitor sections.

The Schmitt trigger is incorporated to

The reference terminal of regulator (IC3) is kept at 3.9 V using LED2, LED3, and diode D6 in the common lead of IC3 to obtain the required regulated output (15.9V), in excess of its rated output, which is needed for proper operation of the circuit. This output voltage is fed to the base of transistor T3 (BC548), which along with transistor T4 (2N3055) forms a Darlington pair. You get 14.5 V output at the emitter of transistor T4, but be-
cause of a drop in diode D7 you effectively get 13.8 V at the positive terminal of the battery. When Schmitt trigger switches 'on' relay RL1, charging is at high current rate (boost mode). The fast charging path, starting from transformer X2, comprises diode D5, N/O contacts of relay RL1, and diode D7.

The circuit built around IC4 and IC5 is the voltage monitoring section that provides visual display of battery volt-
age level in bar graph like fashion. Regulator 7805 is used for generating reference voltage. Preset VR1 (20 kiloohm) can be used to adjust voltage levels as indicated in the circuit. Here also a potmeter arrangement using resistors R7, R8, and R9 is used as 'divide by 3' circuit to sample the battery voltage. When voltage is below 10 V , the buzzer sounds to indicate that the safe discharge limit has been exceeded.

* * 人

ANANTHA NARAYAN

f wires of two dissimilar metals are joined at both the ends and the junction formed at one of the ends is heated more than the other junction, a current flows in the circuit due to $\mathrm{Se}-$ beck thermal emf. This effect is used in thermocouple (TC) temperature sensors.

The Peltier effect is converse of the Seebeck effect, which means that if a current is forced through junctions of dissimilar metals, one junction starts getting hot while the other starts getting cold, depending on direction of the applied emf. This effect is used to make small portable refrigerators.

It is known that one of the junctions is the sensing or hot junction ($\mathrm{T}_{\text {mes }}$) and the other junction is the terminating or cold junction ($\mathrm{T}_{\text {ref }}$). The voltage between terminals ' a ' and ' b ' is proportional to $T_{\text {mes }}-T_{\text {ref }}$ (as given in the Table 1). The formula being $V_{a b}=a\left(T_{\text {mes }}-T_{\text {ref }}\right)$, where a is the Seebeck coefficient of the thermocouple.

In the circuit, use only metal film

Table I		
MV Thermocouple	Temperature in ${ }^{\circ} \mathrm{C}$	Remarks
0	0	As cold junction is not zero but is at room
2.585	50	temperature (RT), add RT to temperature.
5.268	100	
10.737	200	
16.325	300	
21.846	400	Example
27.338	500	Feed 10.777 mV between the TC+ and TC-
33.096	600	terminals. If RT is 30 $30^{\circ} \mathrm{C}$, reading on 2V DPM
Reference junction or cold junction at $0^{\circ} \mathrm{C}$.	will be 230 counts i.e. 230 mV .	

enough.
A simple way to make a TH1 Cu thermistor is to take a lmeg-ohm, 2W resistor as a former and wind 2 metres of 46 SWG enameled copper (Cu) wire (5.91ohm/metre) over it. This gives a 12ohm value. Terminate wire ends on resistor leads.

For calibration, you will need a DMM/
resistors (MFRs) of 1 per cent tolerance, as this is an instrumentation application. Power supply should be a stable $+5 \mathrm{~V},-5 \mathrm{~V}$ supply, for which one can use 7805 and 7905 regulators.

The input terminals TC+ and TCshould go to a 4-way barrier terminal block. Two extra terminals are used to mount TH1 Cu thermistor. This forms an isothermal block, which is good DPM and a millivolt source (as shown in the figure below). First connect source between terminals TC+ and TC-, then set source to 0.00 mV (verify with DMM for zero). The output across tout and -
 out terminals must be in mV (use DMM), representing the room temperature (RT). F or example, if $R T$ is $30^{\circ} \mathrm{C}$ (use a glass thermometer), +out should be 30 mV . At 0 mV input, adjust VR1 till 30 mV is read at +out terminal. This is

'zero cal'. Now increase mV input to 21.85 (corresponding to $400^{\circ} \mathrm{C}$). Then vary VR2 till +out terminal is at 430 mV (temp. +RT). This is 'gain cal'. Now, as VR1 and VR2 are interdependent, you may have to repeat 'zero cal' and 'gain cal' a few times till you get the above values.

Properties of J thermocouple and design aspects of gain block used in the temperature measurement instrument are summarised below:

J Thermocouple (ANSI Symbol 'J ')

1. J is a thermocouple made of iron (positive) and constantan (negative).
2. Constantan is an alloy of copper and nickel.
3. Full range of use is from $-200^{\circ} \mathrm{C}$ to $+700^{\circ} \mathrm{C}$.
4. It is practical to use it only from $0^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$.
5. It is useful in reducing and alka-
line atmosphere.
6. It corrodes/rusts in acidic and oxidising atmosphere.
7. Colour codes of wires are negativered and positive-white.
8. J type is popular because of low price and high mV output.
9. J type TC is used in rubber/plastic forming and for general purpose.

Design of gain block

1. Minimum input from thermocouple is as low as 1 to 2 mV . Hence ultra-low offset ($<100 \mu \mathrm{~V}$) op-amp OP07 is used.
2. Inputs may be subjected to wrong connections or high voltage. Use of resistor R2 limits current and zener ZD1 clamps voltage to a safe level.
3. Gain required is $400 \mathrm{mV} / 21.8 \mathrm{mV}$, which is approximately 18 at $400^{\circ} \mathrm{C}$.

Gain $A v=(R f+R i) / R i$. Here $R f$ is $R 7$ and $\mathrm{Ri}=\mathrm{R} 5+\mathrm{R} 6+\mathrm{VR} 2$ (in circuit-value).

Design of TH1 cold junction compensation copper thermistor

1. J Type TC output changes by 0.052 mV per ${ }^{\circ} \mathrm{C}$ as per Table I. Copper has a temperature coefficient of 0.0042 ohm per ohm $/{ }^{\circ} \mathrm{C}$. For example, for a copper wire of 12 ohms, it is $12 \times 0.0042=0.05$ ohm $/{ }^{\circ} \mathrm{C}$.
2. For R1 of $5 k$, current through $\mathrm{TH} 1=$ $5 \mathrm{~V} / 5 \mathrm{k}=1 \mathrm{~mA}$. Change of voltage across TH1 with temperature is $0.05 \times 1 \mathrm{~mA}=$ $0.05 \mathrm{mV} / \mathrm{deg}$.
3. This rate is the same as that of J type thermocouple and hence it simuIates cold junction.

Lab Note. During lab testing the value of VR1 had to be very much increased. However, as per author, it should be kept at 1 kilo-ohm only.

MUKESH KUMAR SONI

This circuit consists of two parts as shown in the figure. The upper circuit should be assembled in a box along with regulated 9 V power supply (not shown in figure), while lower circuit may be assembled on a small gen-eral-purpose PCB and fixed inside the doorbell switch enclosure. Connect points A and B of one module to the similar points of the other, using a simple 2core electric cable. The polarity need not be adhered to, because the bridge rectifier used inside the switch circuit automatically ensures proper polarity.

In the normal condition, any voice or sound in the vicinity of the door, where the lower circuit (module 2) is installed, will be heard on module 1 inside your home. However, as soon as the door bell switch is pressed by someone, a distinct bell sound will be heard in the loudspeaker, inside the house.

With switch S1 in open condition, module 2 , which is a simple condenser mic amplifier, amplifies the sound/audio in its vicinity and the audio output is available across points A and B. In module 1, this audio is devel oped across preset VR1, which acts as a volume control. The audio from the wiper of the preset is coupled to the input of

low-power (1.2-watt) audio amplifier TBA820M, which after amplification is fed into a 4-ohm loudspeaker. (The combination of resistor R9 and capacitor C7
introduced by EFY Lab in the path of Vcc pin 6, during actual testing, helps in noise reduction and limits the power dissipation in IC2.)

Transistor T1 is normally conducting due to its base pulled to the positive supply rails via resistors R3, R5, and R4. Therefore collector of transistor T1 is at near ground potential, and

hence the melody generator UM66 (IC1) does not get any power supply and is thus off.

When bell switch S1 is pushed (closed), the audio output from module 1 is shorted to ground and at the same time transistor T1 base is pulled to ground via resistor R3. As a result, transistor T1 is cut off, to pull
its collector high. The voltage at collector of transistor T1, after limiting by zener ZD1 to 3 V , serves as power supply for melody generator UM66. The output of melody generator is directly coupled to the input of audio amplifier and hence only melody is reproduced in the speaker, when switch S1 is pushed.

The main advantage of this bell is
that if there are strangers outside the door, conversing before gaining entry by pressing the bell switch, you can eavesdrop and hear their conversation to guess their intentions.

Lab Note. This circuit can be easily modified to act as door-phone cum doorbell. So try it out!

Several circuits have been published in earlier issues of EFY for producing eye-catching lighting effects, such as lighting up of characters one-by-one and their going off one-by-one in same direction, i.e. first character goes off first and so on (firstin first-out, or FIFO). In the present circuit, an attempt is made for changing this sequence, i.e. the first character to go off last (last-in first-out, or LIFO).

Easily available ICs are used and the number of characters is limited to
five. Effects like 'curtain opening and closing' and 'peacock feathers spreading and closing' can be produced. Wiring of the same is shown in separate figures. Each line is lit up by 6 -volt or 12 -volt bulbs connected in series for 230V AC operation and controlled via triacs. LEDs can also be used with proper driving circuits. (Please ensure that sum of voltage drop across the series-connected bulbs is equal to around 230 V .)

Flip-flops formed by NOR gates are used for controlling the sequence. NOR
gates N1 and N2 form an oscillator whose period can be controlled using preset VR1. Oscillator's output is fed to clock input pin 14 of IC1 (CD4017), which is a decade counter.

Initially when output Q0 of IC1 is high, the output of flip-flop formed by NOR gates N3 and N4 goes high, thus triggering triac-1 through driving transistor T1. In the same way, when Q1 to Q4 outputs go high sequentially, corresponding triacs get triggered and all the five groups of bulbs light up. The first part of the sequence is over.

When output Q5 of IC1 become high, the flip-flop formed by NOR gates N11 and N12 is toggled and the output is pulled to logic 0 , removing the neces-

sary drive given to triac5. Similarly, when outputs Q6 through Q9 become high, triac-4 through triac1 go off one by one and the earlier lit up bulbs go off last. The second part of the sequence is also over and then the

K.S. SANKAR

This proximity detector is constructed using an infrared diode detector. Infrared detector can be used in various equipment such as burglar alarms, touch-free proximity switches for turning on a light, and sole-noid-controlled valves for operating a water tap. Briefly, the circuit consists of an infrared transmitter and an infrared receiver (such as Siemens SFH50638 used in TV sets).

The transmitter part consists of two 555 timers (IC1 and IC2) wired in astable mode, as shown in the figure, for driving an infrared LED. A burst output of 38 kHz , modulated at 100 Hz , is required for the infrared detector to sense the transmission; hence the set-up as shown is required. To save power, the duty cycle of the 38 kHz astable multivibrator is maintained at 10 per cent.

The receiver part has an infrared detector comprising IC 555 (IC3), wired for operation in monostable mode, followed by pnp transistor T1. Upon reception of infrared signals, the 555 timer (mono) is turned 'on' and it re-

mains 'on' as long as the infrared signals are being received.

When no more signals are received, the mono goes 'off' after a few seconds (the delay depends on timing resistorcapacitor combination of R7-C5). The delay obtained using 470kilo-ohm resistor and $4.7 \mu \mathrm{~F}$ capacitor is about 3 seconds. Unlike an ordinary mono, the capacitor in this mono is allowed to charge only when the reception of the signal has stopped, because of the pnp transistor

T1 that shorts the charging capacitor as long as the output from IR receiver module is available (active low).

This setup can be used to detect proximity of an object moving by. Both transmitter and receiver can be mounted on a single breadboard/PCB, but care should be taken that infrared receiver is behind the infrared LED, so that the problem due to infrared leakage is obviated.

An object moving nearby actually reflects the infrared rays from the infrared LED. As the infrared receiver has a sensitivity angle of 60°, the IR rays are sensed within this lobe and the mono in the receiver section is triggered. This principle can be used to turn 'on' the light, using a relay, when a person comes nearby. The same automatically turns 'off' after some time, as the person moves away.

The sensitivity depends on the current-limiting resistor in series with the infrared LED. It is observed that with in-circuit resistance of preset VR1 set at 20 ohms, the object at a distance of about 25 cms can be sensed.

This circuit can be used for burglar alarms based on beam interruption, with the added advantage that the transmitter and receiver are housed in the same enclosure, avoiding any wiring problems.

December

EEECTRONIC BELL SYSTEM

Dr D.K. KAUSHIK

In this innovative project, a simple electronic bell system using commonly available ICs is presented for use in educational institutes. This simple and easy-to-fabricate project has the following features:

- It sounds the bell automatically after every period of 40 minutes.
- It displays in digital form the current time and period number of the class going on.
- The system automatically switches off after the last period ($11^{\text {th }}$ period). The digital clock showing the current time,

	PARTS LIST
Semiconductors:	
IC1	- $7805+5 \mathrm{~V}$ regulator
IC2	- 7474 dual 'D' flip-flop
IC3	- MM5369 oscillator/driver
IC4	- MM5387/LM8361 clock chip or equivalent
IC5, IC6	- CD4026 decimal up-counter with 7-segment driver
IC7-IC10	- CD4017 decade counter
T1, T2	- BC107 npn transistor
T3, T4	- 2N2222 npn switching transistor
D1-D8	- 1N4001 rectifier diode
LED1, LED2	- Red LED
Resistors (all $1 / 4$-watt, $\pm 5 \%$ carbon, unless stated otherwise):	
R1, R2	- 2.2-kilo-ohm
R3, R44, R50	- 1.5-kilo-ohm
	- 4.7-kilo-ohm
R5, R6, R45	
R46, R48	- 10-kilo-ohm
R7-R43	- 330-ohms
R47	- 56-kilo-ohm
R49	- 20-mega-ohm
Capacitors:	
C1, C4	- 100 $\mu \mathrm{F}, 25 \mathrm{~V}$ electrolytic
C2	- 30pF ceramic disk
C3	- 30pF trimmer
Miscellaneous:	
S1-S4	- Tactile switch (SPST)
S5	- Tactile switch (DPDT)
$\mathrm{X}_{\text {TAL }}$	- 3.57945MHz crystal
RL1-RL2	- 12V, 200-ohm relay (SPST)
DIS.1-DIS.6	- LT543 common-cathode
	7-segment display
	- Power amplifier with
	loudspeaker

however, continues working as usual.

The principle

Fig. 1 shows the block diagram of the system, which has three parts. Part I has the usual digital clock comprising quartz crystal oscillator cum frequency divider IC MM5369, clock chip MM5387, and 7 -segment common-cathode displays.

The 1 Hz pulse (i.e. one pulse per sec.) is taken from the digital clock and used in part II of the circuit. The accuracy of the system depends on this 1 Hz pulse, obtained from the standard digital dock circuit. In part II of the system, the 1 Hz pulse is used to obtain one pulse after every 40 minutes, by employing a four-stage counter circuit.

The pulses obtained at 40-minute in-

Fig. 1: Block diagram of the electronic bell system
tervals drive transistor T4 (see Fig. 2) into saturation for a few seconds (the exact duration being decided by the delay circuit comprising 56-kilo-ohm resistor R47, $100 \mu \mathrm{~F}$ capacitor C 4 , and diode D7). When the transistor goes into saturation, relay RL2 is energised and the bell sounds for a few seconds.

Any electronic horn/siren using an audio power amplifier of desired wattage may be used for the bell. In the prototype, the author used an audio tape recorded with the usual sound of brass bell, with tape recorder/ player of 150 watts rating, driving four $20-$ watt speaker units. It was found adequate for the campus of any educational institute. The readers may, however, use any other sound system according to their requirements.

Part III consists of the period counter and display. It displays the current period in progress. The number of pulses received at 40-minute intervals are counted by this counter circuit and the display unit displays the period number.

One additional relay circuit is used so that the power supply given to parts II and III of the system is automatically interrupted at the end of the eleventh period. Next day the system has to be reset, and the cycle repeats.

The circuit

Fig. 2 shows the detailed circuit diagram. The clock circuit of part I of the system is designed using 3.58 MHz quartz crystal, MM5369 crystal oscillator and divider (IC3), MM5387 clock chip (IC4), four com-

Fig. 2: Schematic diagram of electronic bell system for institutes
mon-cathode 7-segment displays, and a few passive components. For more details of the digital clock, the readers may consult ‘Car Clock Module' project in September 1986 issue or Electronics Projects (Vol. 7) published by EFY. Push-to-on switches S1 and S2 (slow and fast time set) may be used to set the time of the digital clock.
(Note For ready reference, pin configurations of ICs MM5369 and MM5387/ LM8361 are reproduced here in Figs 3 and 4, respectively.)

The standard 1 Hz pulse is taken from pin 39 of IC4 and connected to clock input pin 14 of decade counter IC7 (CD4017). The carry pin 12 of IC7 outputs a pulse every 10 seconds, which is connected to clock pin 14 of the next CD4017 decade counter (IC8). The reset terminal (pin 15) of IC8 is connected to pin 5 (output No. 6) of the same IC. This IC thus divides the signal by a factor of 6 and its pin 12 (carry pin) gives an output of one pulse every minute. This pulse is applied to IC9 (CD4017), where it is further divided by a factor of 10 to produce an output pulse at every 10-minute interval. Finally, a pulse at every 40-minute interval is obtained from IC10 (CD4017), which is configured as divide-by-four counter, since its reset pin 15 is shorted to Q4 output pin 10 of IC10.

The output pulse at pin 3 of IC10 remains high for ten minutes and low for 30 minutes. This output pulse (every 40 minutes) is connected to the base of transistor T4 through a combination of capacitor C4 and resistance R47, to energise the relay and sound the bell. The capacitor-resistor combination of C4-R47 acts as a differentiator circuit, while diode D7 dips off the negative going portion of the pulse. The delay time may be adjusted by choosing proper C4-R47 combination values.

After the preset time delay of a few seconds, the transistor goes into cut-off and the relay gets deenergised, to switch off the bell. However, the clock circuit of part I around IC4 and divider circuit formed by IC7 through IC10 con-

Fig. 3: Pin configuration of MM5369
tinue to work as usual and hence the accuracy of the periods is not affected by the 'on' and 'off' times of transistor T4.

To count and display the current period, a two-digit counter is designed using two CMOS decade counter cum 7segment decoder/driver CD4026 ICs (IC5 and IC6) and two 7-segment com-mon-cathode displays (LT543). The pulse obtained every 40 minutes from pin 3 of IC10 is also connected to the input of this two-digit counter. This counter counts these pulses and displays them via the LT543 (showing the current period number in progress). The two-digit counter counts and displays the period number up to 11 .

The segment 'd' output for most significant digit (MSD) and segment ' c ' output for least significant digit (LSD) from IC5 and IC6 are connected to the bases of transistors T1 and T2 respectively, via 2.2-kilo-ohm resistors R1 and R2. The collectors of the two transistors are connected together, working as a NOR gate. When ' d ' and ' c ' segment driving outputs from IC5 and IC6 respectively, go low simultaneously (just at the beginning of $12^{\text {th }}$ period), the output (com-

Fig. 4: Pin configuration of IC MM5387/LM8361

The 'Q' output of this flipflop drives relay RL1 through transistor T3, and thus switches off the supply to parts II and III of the system, just at the beginning of $12^{\text {th }}$ period (i.e. at the end of $11^{\text {th }}$ period). Resumption of the supply may take place the next day after momentarily pressing switch S3. For power supply, a 12 V car battery with charging facility is recommended.

An actual-size, singlesided PCB for the circuit (Fig. 2) is shown in Fig. 5 and the component layout for the PCB in Fig. 6. The total cost of the system, excluding cost of audio amplifier, tape recorder, horn, etc, is about Rs 1,000.

Operation

After completing the circuit, test the circuit according to mon collector voltage of transistors T1 and T2) goes high. This output is also connected to dock pin 3 of IC2 (IC 7474), which is a dual ' D ' flip-flop.

Only one of the two flip-flops is used here in toggle mode by connecting its $\overline{\mathrm{Q}}$ pin 6 to data (D) pin 2. The flip-flop toggles after every clock pulse.
circuit description, as discussed above. For operation of the circuit, switch S3 is momentarily pressed for resumption of the supply to parts II and III of the circuit, as relay RL1 is energised. Pe-riod-displaying 7-segment displays DIS. 5 and DIS. 6 will display any random number, which is reset to 00 by momentary

Fig. 5: PCB layout depression of switch S4.

Further, switch S5 (DPDT) is pressed and then released exactly at the time when the first period is to start. This resets IC7 through IC10. The output Q0 at pin 3 of IC10 will go high, to energise the relay and thus switch on the bell for a few seconds and advance

Fig. 6: Component layout
the period display from 00 to 01 (indicating that the first period has started).

Hereafter, the circuit works automatically, sounding the bell for a few
secondsafterevery40minutes.Intheevening, after theeleventh periodisover andtheinstituteistobe dosed, thepower supplytopartsII and III of the
exhibition where it was appreciated and liked by most of the visitors-especially those from the educational institutes. I

SIMPLE TELEPHONE RECORDING/ ANSWERING MACHINE
 B.B. MANOHAR

This project is intended to provide you with a simple recording and answering machine, which in the absence of the subscriber/owner of the telephone instrument, responds to the incoming calls and also records them automatically.

Description

To understand the overall working of the system, refer to its block diagram shown in Fig. 1. The incoming telephone line pair is terminated into the ring detection unit comprising a monostable flip-flop followed by a ring counter to detect the incoming calls. After counting a predetermined number of rings, it triggers a timer (another monostable flip-flop) via an inverter. The output of the timer is used for energisation of a set of relays, which initiate the following actions:

1. Switch on AC power to the tape recorder.
2. Switch on DC voltage to the tape player.
3. Reset the ring counter in the ring detector section to make it ready for the next incoming call/ ring. However, any fresh call/ ring will be ignored as long as the timer output stays 'high'. The timer output also controls the 'on' time of
the recorder and player. The 'on' time can be set as per length of the message to be recorded/played; say, two to three minutes.
4. Simulate offhook state of the telephone, which is initially in on-hook condition.

The schematic diagram incorporating the control circuitry, including power supply and relays, is shown in Fig. 2. The line diagram, including all accessories used in the system, is shown in Fig. 3.

Normally, the telephone lines (in onhook position of the
handset) carry 50V DC. However, during ringing, the lines carry 133 Hz , 80 V AC (modulated pulses), as shown in Fig 5.

Ring detection circuit comprises an input sensing section followed by monostable multivibrator and decade counter. In the input sensing section, capacitor C1 is used for DC blocking while 1N4007 diode D1 is used to rectify the AC ringing voltage. The potentiometer formed by resistors R2 and R3 (shunted by base-to-emitter resis-

Fig. 1: Block diagram of telephone recording/answering machine

Fig. 2: Circuit diagram of telephone recording/answering machine

Fig. 3: Line diagram of telephone recording/answering machine showing interconnection amongst accessories used in the system
tance of transistor T1) acts as voltage/ current limiting network for transistor T1. During the positive incursions
of the ringing voltage at the base of transistor T1, it is driven into saturation. As a result, the collector of
transistor T1 is pulled 'low'. This lowgoing pulse is coupled to trigger pin 2 of timer NE 555 (IC1) configured as monostable (retriggerable). The output pulse width of IC1 is given by the relationship

Pulse width $=1.1$ R4 \times C3 . seconds
where R4 is in ohms and C3 in Farads.
With the component values shown, the pulse width will be roughly 0.36 seconds. This will ensure that the mono pulse does not end during the pause period (0.2 sec .) between two successive rings, so that only one pulse is generated at the output of IC1 for each pair of ring signals separated by 0.2 seconds.

The output of IC1 is coupled to clock input pin 14 of the decade counter IC 4017 (IC2), which is used for counting the rings. From the decade counter one can select any output from Q0 through Q9. But in this project, we take the output from Q3, which goes high at the beginning of third ring

Fig. 4: Telephone circuit diagram using single Motorola IC MC34010/MC34011
(so you will hear only two rings properly).

The Q3 output at pin 7 of IC2 is inverted by N1 inverter gate of IC3 to trigger timer IC4 (configured as monostable), whose pulse width can be adjusted with the help of preset VR1. The pulse width should be so adjusted that the tape player could replay the required message and the recorder could record the response from the far-end subscriber within the set pulse width period. As stated earlier, timer IC4, when triggered, initiates four different functions. These are

Fig. 5: Ringing tone timing waveform
microprocessor interface; otherwise both chips are identical.)

Important points

Normally, the player and reaccomplished via relays RL1 - RL3 as follows:

1. The output of timer IC4 energises

IC4 via relays. If we use C90 cassette tapes for the incoming calls, and assuming that pulse width of timer IC4 is set for 3 minutes, we can record/ answer 15 incoming calls, since we can use only one side of the tape in this set-up and hence we can play/record the messages for 45 minutes only. However, one may use each 3-minute duration for message answering(playing) for relay RL1. On energisation, contacts RL1(a) of this relay extend +12 V to the coils of RL2 and RL3, thereby energising both of them (RL2 and RL3). RL1(b) contacts of relay RL1 (on energisation) switch on the DC supply to the record player, whose play button is supposed to be already depressed. (Please note that DC power supply for the player is not catered to in the circuit. The supply voltage will depend on the 'make' of the player, and may vary from one player to the other. In many cases, battery supply (provided inside the player itself) could be routed via RL2(a) contacts.) Thus, it will start playing the prerecorded message, which would get coupled to the telephone lines, since the hook switch would also be in the released state, simultaneously via relay RL3 (energised) contacts, as described later.
2. RL2(a) contacts of relay RL2, on energisation, extend +12 V to reset pin 15 of counter IC2. Thus the counter remains reset until IC4 timer's output goes low again. RL2(b) contacts of relay RL2, on energisation, switch on 230V AC supply to the tape recorder and thus it can record the message received in the earpiece of the telephone.
3. Relay RL3 performs the functions of cradle switch for the telephone in absence of the subscriber (or even during his presence, if he fails to lift his handset off the cradle during ringing). Its contacts RL3(a) and RL3(b) are wired in parallel with the hook switch, as shown in Fig. 4. (This application circuit is based on Motorola singlechip telephone set IC MC34010 or MC34011. The latter chip does not provide Fig. 7: Component layout for the PCB

PARTS LIST (Fig. 2)

Semiconductors:

IC1, IC4	- NE555 timer
IC2	- CD4017 decade counter
IC3	- CD40106 inverter
IC5	-7812 regulator (+12V)
T1	- BC547 npn transistor
D1-D7	- 1N4007 rectifier diode
LED1, LED2	- Red LED

Resistors (all $1 / 4$-watt, $\pm 5 \%$ carbon, unless stated otherwise):

R1	-100 -kilo-ohm
R2, R7	-4.7 -kilo-ohm
R3, R4, R8	-10 -kilo-ohm
R5	-33 -kilo-ohm
R6	-2.2 -ohms
R9, R10	-1 -kilo-ohm
VR1	-1 -mega-ohm preset

Capacitors:
C1, C2, C4, C5-0.1 $\mu \mathrm{F}, 25 \mathrm{~V}$ ceramic disk
C3 $-10 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic

C6 $-470 \mu \mathrm{~F}, 16 \mathrm{~V}$ electrolytic
C7, C8 $\quad-1000 \mu \mathrm{~F}, 35 \mathrm{~V}$ electrolytic
Miscellaneous:

X1	-230 V AC primary to
	$12 \mathrm{~V}-0-12 \mathrm{~V}, 500 \mathrm{~mA}$ sec.
	transformer

RL1-RL3 - 12V, 150-ohm, 2C/o relay

- Tape player with DC supply source
- Tape recorder
- Telephone instrument
a minute, with the remaining two minutes reserved for recording other-end subscriber's message (i.e. the tape in the player will run blank for these two minutes). During these two minutes, if other-end subscriber is relaying any message, then the same will be recorded automatically in the tape recorder that is already 'on'.

Whenever the subscriber (owner) intends going out of station, he will have to rewind the player and press the play button 'on'. Similarly, he has to rewind the recorder for recording the 15 incoming messages and also ensure that the recording button is in 'on' (pressed) condition. Both the recorder and the player will be automatically switched 'on' for the preset duration whenever three rings are received, as explained already.

An actual-size PCB for the circuit in Fig. 2 is shown in Fig. 6 and its component layout is shown in Fig. 7.

The author is proprietor/ technical director of VEPCO, Madurai.

MULTICHANNEL CONTROL USING SOFT SWITCHES

P. SABARINATHAN

This circuit uses only one octal Dtype latch, IC 74LS373, and some associated circuitry to control eight different gadgets. To control more devices, identical circuits, in multiples, can be used. The circuit incorporates the following features:
(a) Individual 'on/off' control for all channels.
(b) Emergency 'off' control for all channels.
(c) Immediate 'on' control for all channels.
(d) LED indication for 'on' channels.
(e) Optional push-to-on buttons or tactile switches.

When one presses the 'on' switch (S1) of channel 1, a logic low is applied to data input pin DO. The same level appears on the data output pin Q0, because latch-enable pin LE (active high) is connected to Vcc, and the out-put-enable $\overline{\mathrm{OE}}$ (active low) is pulled down using resistor R9. At the same time, Q0 output is fed back to D0 input, which thus keeps the common

junction of D0 and Q0 (marked ' A ' in the figures) at low level, even after releasing 'on’ switch S1. This low level
is applied to the base of transistor T1 through diode D9 to turn it on, and RL1 is activated. LED1 also glows to indicate that channel 1 is 'on'. The other channels can also be switched on, as desired, in a similar manner.

To switch off channel 1, 'off' switch S9 of channel 1 is pressed to apply logic high to point ' A '. Because

of the feedback from Q0 to D0, point ' A ' remains high even after releasing the 'off' switch. As a result, relay RL1 is deactivated and LED1 also goes off.

In case of emergency, press the
emergency off switch S17 to disable all the outputs of IC1. In this state, the outputs of IC1 are in high impedance state, and as all transistor bases are almost 'open', all the relays get deactivated.

If all the channels are to be switched on simultaneously, a 'low' logic level is applied via diodes D17 through D24, to data inputs D0 to D7, by pressing switch S18 to activate all the relays.

AN EXCLUSIVE SINEWAVE GENERATOR

Many electronic devices depend upon the shape of the signals. It is very easy to produce squarewave signals from sine wave, but reproducing sinewave signals from the square wave is quite difficult. In
case of static squarewave-to-sinewave converter, in low frequency range, we can get accurate sine wave, but in high frequency range the shape will not be a true sine wave. Here is a solution to that problem.

The circuit shown here uses five ICs. The squarewave signal is fed at pin 1 of IC1 (CD 4024). IC1 is a 7-bit counter, but here only 6 bits are made use of. The first four bits are fed as a signal bus to IC3 (CD4066) quad bilateral switch through IC2 (CD4077B) that contains four exclusive NOR gates. It converts the 4-bit signal bus to 'up mode' and 'down mode' hexadecimal signals, simultaneously. The converted signal bus switches on and off the ladder switches inside CD4066. As a result, the net resistance of ladder varies. This varying resistance varies the charging and discharging current of capacitor C 1 in the feedback path of IC5 (LM 741).

The charging and discharging mode is controlled by IC4 (CD4011). In fact, capacitor C1 works as an integrator. The sinewave producing circuit needs 64bit squarewave pulse for 360° sine wave. A missing pulse in this 64-bit sequence produces ramp.

In this circuit, all ICs except IC5 are CMOS ICs and hence the current consumption is very low.

The value of capacitor C1 may be calculated from the relationship: $\mathrm{Cl}=0.27 /$ $\mathrm{f}_{0} \mu \mathrm{~F}$. The value shown in the circuit is for 50 Hz output frequency. The shape of the sinewave output may be corrected using presets VR1 and VR2.
(EFY Lab note Spikes were noticed in the output waveform while operating with higher frequencies in the kilohertz range.)

IIL THREE-STATE LOCIC PROBE

T. SURESH

ATTL logic probe is an indispensable tool for digital circuit troubleshooting. Various methods can be used to design a logic probe. The most common designs employ opamps, logic (OR, NOT, XOR) gates, and transistors.

The circuit presented here uses NAND logic gates of Hitachi HD series IC HD74LS00, which is a quad-NAND IC. Special technique has been employed to obtain three-state operation using just a single IC.

Gate N1 is wired such that when the output of gate $N 1$ is at logic ' 0 ' (i.e. when its input is at logic ' 1 '), LED1 will glow, to indicate high state of the point being

S. No.	TIP level	Output
1.	Ground/logic 0	LED3 ON
2.	Vcclogic 1	LED1 ON
3.	Floating/or connected to high impedance	LED2 ON

probed. Gate N3 is wired to light LED3 when the output of gate N3 is high or when the point being tested is at logic ' 0 '
level. At power-on, the output of NAND gate N2 goes low. This is the default state of the gate. The output of gate N2 goes low (indicated by glowing of LED2) during the following situations:

1. Power to the probe is switched 'on'.
2. The probe's tip is floating, i.e. when it is neither in contact with a point at logic '0' nor at logic ' 1 ' state.
3. The probe tip is in contact with a TTL output that is in high impedance state.

The LED indications for various tip levels are summarised in the accompanying table.

This logic probe is very well suited
for use with microcontrollers, microprocessors, EEPROMs, SRAMs etc.

Some points to be noted are:

- Use IC1 of type HD74LS00 only.
- If any other type of IC (e.g. 74HCT00 or 74LS00) is used, diodes D2-D3-D4 should be added or deleted as
 necessary; for example, when using HD74LS00, one diode D2 is required.
- Use another diode in series with D2 if the LED indication overlaps the float indicator.
(EFY Lab note. The probe was found to work properly only with HD74LS00.)

AM DSB TRANSMITTER FOR HAMS
 YUJIN BOBY VU3PRX

This circuit of AM transmitter is designed to transmit AM (amplitude modulated) DSB (double sideband) signals. A modulated AM signal consists of a carrier and two symmetrically spaced side bands. The two side bands have the same amplitude and carry the same information. In fact, the carrier itself conveys or carries no information. In a 100% modulated AM signal $2 / 3^{\text {rd }}$ of the power is wasted in the carrier and only $1 / 6^{\text {th }}$ of the power is contained in each side band.

In this transmitter we remove the carrier and transmit only the two side bands. The effective output of the circuit is three times that of an equivalent AM transmitter.

Opamp IC 741 is used here as a microphone amplifier to amplify the voice picked up by the condenser microphone. The output of opamp is fed to the double balanced modulator (DBM) built around four 1N4148 diodes. The modulation level can be adjusted with the help of preset VR1.

The carrier is generated using crystal oscillator wired around BC548 transistor T2. The carrier is further amplified by transistor T1, which also acts as a buffer between the carrier oscillator and the balanced modulator. The working frequency of the transmitter can be changed by using crystals of different frequencies. For multi-frequency operation, selection of different crystals can be made using a selector switch. The level of the carrier coupled to the DBM can be adjusted with the help of preset VR2.

The output of the DBM contains only the product (of audio and carrier) frequencies. The DBM suppresses both the input signals and produces double side band suppressed carrier (DSBSC) at its output. However, since the diodes used in the balanced modulator are not fully matched, the output of the DBM does

contain some residual carrier. This is known as carrier leakage. By adjusting the 100 -ohm preset (VR2) and trimmer (C7) you can anull the scarier leakage.

To receive DSB signals you need a beat frequency oscillator to reinsert the missing carrier. If you don't have a beat frequency oscillator, or want to transmit only AM signal, adjust preset VR2 to leak some carrier so that you can receive the signals on any ordinary radio receiver. In AM mode 100\% modulation can be attained by adjusting pre-
sets VR1 and VR2.
The DSBSC signal available at the output of the balanced modulator is amplified by two stages of RF linear amplifiers. Transistor 2N2222A (T3) is used as an RF amplifier, which provides enough signal amplification to drive the final power amplifier around transistor SL100B. The output of the final power amplifier is connected to the antenna.

All coils are to be wound on ferrite balun core (same as used in TV balun transformer of size $1.4 \mathrm{~cm} \times 0.6 \mathrm{~cm}$)
using 24SWG enameled copper wire. Proper heat-sink should be provided for SL100B transistor used as final power amplifier.

Range of the order of a few kilometres can be easily achieved by proper choice of site, type of antenna (such as a resonant half-wave dipole of length 20 metres for 7.05 MHz frequency) and proper matching of transmitter to the antanna. Use good-quality shielded wire of short length to connect the crystals.

GROUND CONDUCTIVITY MEASUREMENT

PRASAD J.

The circuit presented here provides the simplest way to measure earth conductivity. Using

[^2]this, radio hobbyists can choose a suitable site for the erection of antennae that require good grounding; for example, a vertical antenna that uses radial ground plane. This circuit is also useful for selecting a suitable site to carry out the earthing of
industrial sheds or housing. With a little ingenuity and experimentation, one can even predict the availability of underground water at a site. It should be noted that geologists employ a similar probe, but in place of 50 Hz AC mains used here, they employ RF for this purpose.

Though electronics hobbyists having a flair for gardening can measure the salinity or the fertility of soil to be used for their special plants, using the method described here, it however needs a lot of experimentation and study.

The circuit presented here employs a simple AC measurement technique. The efficiency of the circuit and results improve as the frequency of AC increases. With regular mains voltage source of 230 volts, 5 -amp current capacity, and 50 Hz frequency available, the measurements result in 25 per cent
accuracy, which is quite reasonable and adequate for some practical applications.

The bulb (which is $230 \mathrm{~V}, 100 \mathrm{~W}$, filament type) shown in the figure is mounted on a wooden box with a bulb holder. Connection to the mains supply is obtained using long wires, which are terminated into a 3-pin power plug that ensures non-reversibility of live and neutral leads. The bulb drops the voltage to a safer level at the terminating probe. Resistor R1 limits the current. Voltage V1 is measured across resistor R1 using AC voltmeter.

The probes, which are equidistant from each other (about 45.7 cm , or 18 inches, apart) have a height (below ground level) of about 30.5 cm (12 inches) and a diameter of 1.25 cm (or $1 / 2$-inch). The probes may be made of iron, stainless steel, or copper. (The au-
thor used copper probes.)
The ends of the probes are connected securely to the wires by means of battery terminal lugs (generally used in automobiles) or power supply terminals (used in UPS, DC-AC converters, etc). The probes P2 and P3 can be fixed on hylam strips measuring 75 cm (20-inch) 55 cm (2-inch) x $5 \mathrm{~mm}(0.2$-inch). Hylam strips are generally available from switchboard dealers.

To measure the conductivity (\mho), the probes are driven into the ground, as shown in the figure, and the circuit is powered with adequate safety measures against any electric hazard. Voltages V1 across resistor R1 and V2 across probes P2 and P3 are measured and noted.

The earth conductivity is then calculated as:

STEPPER MOTOR CONTROL VIA PARALLEL PORT
 SHOBHAN KUMAR DUTTA

T0 better understand the circuit, one needs to have some knowledge of electronics, computer programming, and the computer's parallel port.

You will of course need a computer, 12-volt power supply (preferably a battery eliminator), stepper motor, ULN2003 chip, and some connecting wires.

The circuit can be easily assembled on a breadboard. It is very important that you work with the smallest stepper motor available in the market, such as

Conductivity $=21 x \mathrm{~V} 1 \mathrm{~N} 2$ millimhos/ metre (mv / m)

Please note:

- For poor soil with very little moisture and bio-fertility, the conductivity ranges from 1 to 8 millimhos per metre.
- For average soil, the values range from 10 to 20 millimhos per metre.
- For fertile and good conductive soil, the conductivity ranges from 80 to 100 millimhos per metre.
- For very saline soil, or salt water with very good conductivity, the values might be as high as 5,000 millimhos per metre.

Caution. It should be noted that the polarity of the AC (phase and neutral) leads should never be reversed, to prevent any dangers to human/ animal lives.
the one used in a floppy drive. If you go in for the large ones used in CNC machines, there is a chance of damaging the PC's parallel port. The second thing to mention is that the colours of the wires of the stepper motor are non-standard.

The paralIel port of the PC is the most flexible way of getting the
computer to communicate with the outside world.

The parallel port is generally used to interface printers, but we have used it to interface the stepper motor. The parallel port consists of 25 pins, but it can only transmit 8 bits of data at a time. The reason for the large number of pins is that every data pin has its own ground return pin. There are other pins for various other functions. We have used only four data pins and a ground pin.

The functions of the various pins are given in Table I. Pins 2 through 9 are data pins. Here, we will use data pins 2 to 5, corresponding to data bits D0 through D3 of port 378(hex) for LPT1 or 278(hex) for LPT2. Also, pin 25 is used as the ground pin.

The PC's parallel port cannot sink much current. At the most, it can handle a few milliamperes. So, if the parallel port is connected directly to an electrical device, it will damage the parallel port. Thus, we need a current amplifier in between the parallel port and the electrical device. The ULN2003, used precisely for this purpose, has an array of Darlington transistor pairs. A Darlington configuration is a way of connecting two transistors in order to amplify current to many times the input current value.

The stepper motor has various advantages over other motors, as far as controlling by a computer is concerned. It includes high precision of angular movement, speed of rotation, and high moving and holding torque. It comes in various flavours. We are dealing with unipolar permanent magnet stepper motor that has four coils arranged as follows:

Terminals 1 and 2 are common terminals (connected to ground or the positive supply) and the other four terminals are fed to the appropriate signals. When a proper signal is applied, the shaft turns by a specific angle, called
the step resolution of the motor. On continuous application of the same signal, the shaft stays in the same position. Rotation occurs only when the signal is changed in a proper sequence. There are three modes of operation of a stepper motor, namely, singlecoil excitation mode, dualcoil excitation mode, and half-step modes.

- Single-coil excitation. Each coil is energised successively in a rotary fashion. If the four coils are assumed to be in a horizon-

TABLE I				
Pin No (D-type 25)	Signal	Direction In/Out	Register	Hardware Inverted
1	$\overline{\text { Strobe }}$	In/Out	Control	Yes
2 thru 9	D0 thru D7	Out	Data	-
10	$\overline{\text { Ack }}$	In	Status	
11	Busy	In	Status	Yes
12	PE	In	Status	-
13	Select	In	Status	-
14	$\overline{\text { AFeed }}$	Out	Control	Yes
15	$\overline{\text { Error }}$	In	Status	-
16		Initialise	Out	Control
17	SLCT (Printer)	Out	Control	Yes
18 thru 25	Ground	-	-	-

- Dual-coil excitation. Here, two adjacent coils are energised successively in a rotary fashion. The bit pattern will be 0011, 0110, 1100, 1001, and 0011.
- Half-step mode Here, the stepper motor operates at half the given step resolution. The bit pattern is 0001, 0011, 0010, 0110, 0100, 1100, 1000, 1001, and 0001.

Two software control programs, one for DOS and another for Linux, are included here. The program for DOS can be used to run the motor in full- or half-step mode, or in single-coil or double-coil excitation mode.
(EFY Lab note. The method used at EFY for correct identification of the
stepper motor coils involved measuring the windings' resistance as well as their continuity in ohmsxl scale, using any good multimeter. The resistance of individual coils with respect to the middle points will roughly be half the resistance of the combined coil pairs (L1 and L2 or L3 and L4 in the figure). After having identified the coils in this fashion, connect them to the circuit as shown in the figure Now, if the sequence of input to the coils happens to be wrong, the shaft, instead of moving (clockwise or anti-clockwise), will only vibrate. This can be corrected by trial and error, by interchanging connection to the coils. The output waveforms for full-step singlecoil mode, as seen on the oscilloscope, are shown in the figure)

DOS PROABMM

\#nclude <conio.h>

\#nclude <dos.h>
\#define FULLSTEP SINGLECOIL
//\#define FULLSTE \bar{P} _DOUBLECOIL
//\#define HALFSTEP
unsigned char fullstep_singlecoil_val[]=\{1,2,4,8\}; unsigned char fullstep_doublecoil_val[[]$=\{3,6,12$,
unsigned char halfstep_val[]=\{8,12,4,6,2,3,9\}; void main()
\{
unsigned int $\mathrm{i}=0$;
while(!kbhit())
\{
\#fdef FULLSTEP_SINGLECOIL
outportb(0x378,fulIIstep singlecoil val[i\%sizeof (füllstep_singlecoil_val)]); \#elif defined(FULLSTEP DOŪBLECOIL̄) outportb(0x378,fullstep doublecoil val[i\%sizeof (fūllstep_doū̄lecoil_val)]); \#elif defined(HALFSTEP)

IINUK PROGRAM

\#nclude <sys/io.h>

\#nclude «unistd.h>
\#nclude <tddlib.h>
//\#define FULLSTEP_SINGLECOIL
//\#define FULLSTEP_-DOUBLECOIL
\#define HALFSTEP
unsigned char fullstep_singlecoil_ val[] $=\{1,2,4,8\}$; unsigned char fullstep_doublecoī_val[] $=\{3,6,12$,
unsigned char halfstep_val[]=\{8,12,4,6,2,3,9\}; void main()
\{
unsigned int $\mathrm{i}=0$;
if(ioperm($0 \times 378,1,1)=1$) $\operatorname{exit}(1)$; while(1)
\{
\#ffdef FULLSTEP_SINGLECOIL outb(fullstep_singlecoil_val[i\%sizeof(fullstep singlecoil_val)], $0 \times 37 \overline{8}$); \#elif defined(FULLSTEP DOUBLEECOIL) outb(fullstep_doublecoil_val[i\%sizeof(fullstep doublecoil_val)],0x378);
\#elif defined(HALFSTEP)
outb(halfstep_val[i\%sizeof(halfstep_val)],0x378);
outportb(0x378,halfstep_val[i\%sizeof(halfstep_val))]; \#endif
delay(10);
i+\#;
if($i=65535 u) i=0$;
\}
outportb(0x378,0);
Compile and run the program under any compiler like turboc for dos or Borland $\mathrm{C}+\mathrm{F}$.
\#endif
usleep(5000);
i+
if $(i=65535 u) i=0$;
\}
outb(0,0x378);
\}
Compile and run the program as follows:
\#gcc - 06 -o motor motor.c
\#.motor
The -06 flag is necessary for using the 'outb' function.

The
 End

[^0]: Note: Here PRE is shown up to three decimal places. In practice, one may use up to five

[^1]: I =INPUT; $0=O U T P U T ;$ Hex Eq = Hex digits read via Reg. C
 Note:- Pin 7 of ZIF socket is connected to ground and pin 14 is connected to +5 V .

[^2]: $\mathrm{D}=$ DISTANCE BETWEEN SUCCESSIVE PROBES
 $=45.7 \mathrm{CM}$ ($18^{\prime \prime}$)
 $\mathrm{H}=$ HEIGHT OF PROBES (BURIED PART)
 $=30.5 \mathrm{CM}\left(12^{\prime \prime}\right)$

